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ABSTRACT 

Agile warfighter support, restrictive budgets, and complex adversaries are 

potential drivers for the United States to shift to smaller, simpler space payloads.  

Recent progress in miniaturized space system technologies may make it possible 

for nanosatellites to complement today’s large, extremely high reliability, single 

mission satellites with smaller, less costly platforms that greatly reduce 

development, integration, and launch timelines.  To fully realize this transition, 

Academia and Industry must make additional technological advances in all 

supporting satellite subsystems.  This thesis focuses on the design, simulation, 

and hardware testing of a nanosatellite electrical power subsystem. 

Thesis efforts centered on investigating the feasibility of using commercial 

off the shelf power management and distribution systems in a CubeSat-based 

design for a tactically useful earth-imaging satellite.  Criteria were developed to 

select one power system from among those considered.  Extensive analytical 

simulation, electrical testing, and environmental testing was conducted in the 

context of TINYSCOPE’s mission parameters.  Tactical Imaging Nano-sat 

Yielding Small-Cost Operations and Persistent Earth-coverage (TINYSCOPE) is 

an ongoing collaborative project of the Nanosatellite Advanced Concepts 

Laboratory and the Small Satellites and CubeSat Laboratory both at the Naval 

Postgraduate School in Monterey, California. 
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I. INTRODUCTION 

A. PURPOSE 

The purpose of this thesis is to advance the design of an Electrical Power 

Subsystem (EPS) for a very small satellite project.  Under the auspices of Dr. 

Marcello Romano’s Nanosatellite Advanced Concepts Laboratory, TINYSCOPE 

(Tactical Imaging Nano-Satellite Yielding Small Cost Operations for Persistent 

Earth Coverage) was first proposed by [1] and further studied by [2] and [3] as a 

three-axis stabilized, low earth orbiting, electro-optical imager based on an 

extension of the CubeSat form factor.  The project’s design and operations 

philosophy centers on potentially using a constellation of many relatively 

inexpensive satellites in lieu of a few or one large, expensive satellite.  This 

approach relies heavily on simple design, readily available commercial off the 

shelf (COTS) components, and inexpensive launch on a per satellite basis. 

This strategy presents several unique challenges to the EPS portion of the 

project.  First, TINYSCOPE has much higher power requirements than any 

previous CubeSat system.  This has obvious implications for all facets of the EPS 

including power collection, energy storage, and power management and 

distribution (PMAD).  Second, detailed market research revealed that no space 

rated COTS power management and distribution components exist for a 

CubeSat with TINYSCOPE’s power requirements.  That could lead to an 

expensive new design that could slow down the entire project. 

This thesis endeavors to answer the challenges laid out above through 

design, simulation, and hardware component testing.  The design and simulation 

portions are primarily an analytical-numerical effort while the testing portion 

details the rationale, physical setup, resulting data, and conclusions from testing 

actual hardware.  The intent is to establish whether the selected hardware can  
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meet the requirements laid out in design and simulation.  The outcome of this 

work can then be extended to increasing levels of detail to support a prototype 

unit in the very near future. 

B. PROJECT TINYSCOPE 

1. Mission Description 

The overall mission concept of TINYSCOPE is to provide useful imagery 

directly to in-theater war fighters using a very small and relatively inexpensive 

satellite.  An argument is made by Blocker in [2] that high-demand, low-density 

space-based imagers are not readily available to small tactical units.  

Furthermore, it is suggested that the very high-resolution imagery national assets 

can provide is not generally required by tactical field units.  Because of these 

reasons, tactical units would benefit from more regular access to “good enough” 

imagery.  While the threshold of quality for tactically useful imagery is debatable, 

the overall idea is that many, perhaps hundreds of, TINYSCOPE satellites could 

provide a near real-time stream of battlefield imagery thus affording tactical 

combat units a decisive upper hand.  In particular, according to the preliminary 

study reported in [2], about 350 TINYSCOPE satellites would be needed to 

obtain persistent coverage of the world from 500 km of altitude, while about 60 

would provide an average revisit time of about 30 minutes in daylight. 

2. Project Description 

Beyond the debate surrounding the definition of the term “tactically useful,” 

implementing the mission described above presents several budgetary and 

technical challenges.  These challenges are highly interrelated, i.e. as budget is 

increased, technical challenges become more solvable.  The intent of Project 

TINYSCOPE is to design, build, test, and operate a low earth-orbiting (LEO) 

proto-flight unit using the following guiding principles: 
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• Use COTS components or slightly modified COTS to the maximum 
extent possible. 

• Plan on a short mission life (one year or less). 

• Use a very small, very inexpensive CubeSat spacecraft bus 
(described in more detail below). 

• Use a bulk launch system to populate the constellation (the 
satellite’s small mass and volume enable launching many satellites 
simultaneously). 

Project TINYSCOPE is currently in Phase 2 of 4 phases.  Phase 1 

consisted of two feasibility studies performed by two NPS students, LCDR J. 

Allen Blocker and LT Chance Litton.  LCDR Blocker showed that the concept for 

the bus and attitude control subsystem was viable while LT Litton demonstrated 

that the optical payload was feasible in the context of the current state of 

technology.  Phase 2 will culminate with an engineering design unit 

demonstrating the form, fit, and function of the individual subsystems integrated 

together.  A proto-flight unit will be designed, built, tested, launched, and 

operated in Phase 3.  The proto-flight unit may or may not be in the final intended 

TINYSCOPE orbit because of available launch opportunities.  The Department of 

Defense’s Space Test Program launch service will be used since TINYSCOPE is 

Space Experiment Review Board approved [4].   Finally, Phase 4 could be the 

full deployment of a constellation of about 60 individual TINYSCOPE satellites.  

TINYSCOPE’s notional operational orbit will be sun-synchronous at 500 km in 

altitude with a threshold mission life of one year [5]. 

While this thesis focuses on the EPS, [6] extends the work of [3] on 

payload design, [7] develops critical elements of the attitude determination and 

control subsystem, [5] concentrated on overall systems engineering, and as of 

this writing Army Major Christopher Turner is working as the student project 

manager. 

3. Novel EPS Requirements 

TINYSCOPE’s design is based on the Cube Satellite (shortened to 

“CubeSat”) standard [8].  This standard sets volume, mass, structural, electrical, 
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operational, and testing requirements.  A so-called 1U configuration is shown in 

Figure 1.  The 1U has dimensions of 10 cm x 10 cm x 10cm and a mass of less 

than 1 kg.  A 3U configuration is also described in the standard.  The 3U is 10 cm 

in length and width and 30 cm in height – this is essentially three 1Us stacked on 

top of each other. 

 

Figure 1.   Notional CubeSat Mechanical Drawing From [8] 

While TINYSCOPE’s present design cannot fit in a 3U form factor, there 

are several members of the nano-satellite community pushing for a 5U and a 

2U x 3U configuration consistent with TINYSCOPE’s proposed configuration.  

The 5U would be 10 cm x 10 cm x 50 cm and the 2U x 3U would be 10 cm x 

20 cm x 30 cm (also known as the “Six Pack”).  Figure 2 shows several 

candidate configurations. 

  

Figure 2.   Possible TINYSCOPE configurations:  5U on far left; 2U x 3U on far 
right, From [2] and [5] 
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The most important design implications for a satellite of this size are the 

limited mass, volume, and power generation capabilities of a five to six liter right 

rectangular cylinder.  The solar power collection capabilities will be limited and 

the thermal environment for the solar cells and the batteries may be a concern. 

Another important design consideration is the radiation environment.  

While displacement damage is not expected to be a significant concern for solar 

cells or integrated circuits in the design, expected LEO single event effects and 

their impacts to COTS, typically designed for terrestrial applications, must be 

managed. 

C. PREVIOUS EPS WORK IN CUBESATS 

A fair amount of work has been accomplished in the field of electrical 

power subsystems for CubeSats.  While the CubeSat standard was first 

introduced in 1999 [9], [10] documented that there had been 24 launches by 

November 2008.  Since that time, [11] documents several more launches.  Not all 

of these systems are pertinent for TINYSCOPE’s EPS design, however, because 

many previous CubeSats are in a 1U configuration that tumbles at unknown rates 

in multiple axes.  These CubeSats are not three axis stabilized and subsequently 

are not able to support demanding load requirements. 

Several 3U CubeSat systems that are important to consider in the design 

of TINYSCOPE’s EPS are QuakeSat, GeneSat, MAST, Delfi-C3, CanX-2, and 

Cute 1.7+APD II.  Particularly interesting are QuakeSat and Delfi-C3 because of 

their deployable solar arrays.  Within this subset, QuakeSat additionally had a 

rudimentary form of passive stabilization using the Earth’s magnetic field lines to 

maintain attitude [12].  While not as sophisticated as TINYSCOPE’s planned use 

of reaction wheels or possibly control moment gyroscopes, QuakeSat’s design 

and configuration can provide several insights into overall EPS design. 

QuakeSat was designed and built as a joint university and commercial 

collaboration between Stanford University’s Space Systems Development 

Laboratory and QuakeFinder LLC.  Its primary mission was to detect, record, and 
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downlink extremely low frequency (ELF) radio waves caused by earth’s shifting 

plates immediately surrounding an earthquake [12].  Figure 3 shows QuakeSat’s 

basic configuration. 

 

Figure 3.   Conceptual drawing of QuakeSat, From [12] 

As indicated in Figure 3, QuakeSat had body mounted, as well as 

deployable solar arrays.  The wings, each having solar arrays on both sides, are 

offset by 150 degrees to maximize solar collection.  The twelve 22.9% nominal 

efficiency GaAs solar arrays (four on body, eight on wings) were expected to 

provide between 7.9 W and 19.05 W of power depending on the season.  

Together with the two series, two parallel strings of lithium ion batteries, 

QuakeSat’s EPS supported loads between 2.8 W at minimum and 12.6 W at 

maximum. 

QuakeSat’s EPS was wholly derived from COTS components.  Of 

particular note is the fact that none of QuakeSat’s components were space-rated 

or space-qualified [13].  To partially mitigate this limitation, several reset 

mechanisms were incorporated to deal with single event effects.  These 

mechanisms were successfully used during QuakeSat’s approximately two year 

mission (June 2003 to June 2005) [14]. 

QuakeSat’s success with unmodified COTS components led to discussion 

among those on the TINYSCOPE team when this approach would be appropriate 

and what steps could be taken to mitigate some of the risk associated with this 

strategy.  This discussion led to the work documented in the subsequent 
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chapters of this thesis.  Chapter II documents the overall design of 

TINYSCOPE’s EPS, Chapter III investigates a simulation based on Chapter II’s 

design, and Chapter IV documents the hardware characterization and testing 

accomplished to mitigate some of the risk related to using a COTS approach for 

the EPS. 
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II. PRELIMINARY ELECTRICAL POWER SUBSYSTEM DESIGN 

A. EPS MODEL 

A simplified EPS model based on constant loads developed by [15] is 

used as the starting point from which TINYSCOPE’s model is created.  The 

equations in the following discussion are taken from [15] while [16] elaborated on 

these equations by developing Figure 4.  The EPS model is predicated on a 

single orbit energy balance equation.  In this arrangement, the amount of energy 

taken out of the batteries in a single orbit must be replaced on that same orbit 

during the satellite’s non-eclipse period.  This is stated mathematically as, 

 bd d bc cP T P T× ≤ ×  (1) 

Equation 1 states that the product of charge time ( cT ) and the power of the 

battery during charge ( bcP ) must be greater than or equal to the product of the 

discharge time ( dT ) and the power of the battery during discharge ( bdP ).  

Because the batteries may be in a net state of either charge or discharge, but not 

both, the sum of dT  and cT  is the total orbit time.  A basic steady-state EPS 

model assumes that the power collected during the satellite’s daylight period 

provides all the power necessary to supply the loads during the daylight period 

as well as fully charging the batteries from their use during eclipse.  With this 

assumption, Figure 4 represents a general simplified equivalent circuit for an 

EPS. 
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Figure 4.   Simplified EPS Equivalent Circuit From [16] 

The power to the load is denoted LP  while the power from the solar array 

is denoted saP .  The efficiencies represented on the diagram are battery charge 

efficiency ( cη ), battery discharge efficiency ( dη ), line efficiency from the solar 

array to the loads ( 1η ), line efficiency from the solar array to the battery ( 2η ), and 

line efficiency from the battery to the load ( 3η ).  Efficiencies resulting from 

regulation and switching are not included at this time.  Recalling the earlier 

assumption that the power collected by the solar array ( saP ) must be sufficient to 

simultaneously charge the batteries ( bcP ) and supply the load during charging 

( LcP ), Equation 2 applies, 

 
1 2

Lc bc
sa

c

P PP
η η η

= +  (2) 

One interpretation of Equation 2 is that the solar array must provide a higher 

level of power than just the sum of the power of the load and the power to charge 

the battery.  The solar array power must actually be higher than this sum 

because of the power that is lost due to current flowing in resistive lines and the 

power that is lost putting energy into and taking energy out of batteries.  Solving 

for bcP  results in, 
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 2
2

1

c
bc sa c LcP P P η ηη η

η
= −  (3) 

From Figure 4 it can be seen that that the power of the load during discharge 

flows from the battery and is written as, 

 
3

Ld
bd

d

PP
η η

=  (4) 

Equation 4 assumes that the batteries discharge only in eclipse, i.e. when no 

sunlight is available to partially offset the power required from the batteries.  This 

assumption will be relaxed later.  Substituting Equations (3) and (4) into Equation 

(1) and solving for saP results in the required power of the solar arrays, 

 2 3 1

Ld d Lc c

c d
sa

c

P T P T

P
T

η η η η η
⎛ ⎞

+⎜ ⎟
⎝ ⎠=  (5) 

Much of this thesis focuses on finding higher resolution estimates for each 

of the parameters in Equation 5.  Chapter II, Sections B and C, go into detail 

regarding the power required by the load.  Chapter III develops justification for 

the time in discharge and charge.  These values are not the same as the time in 

eclipse and sunlight for TINYSCOPE because of the slewing and subsequent 

reduced solar collection during its ten-minute imaging period.  The efficiencies 

shown in Equation 5 depend upon the structure of the EPS equivalent circuit 

shown in Figure 4.  Figure 5 was developed to show a more accurate 

representation of TINYSCOPE’s equivalent circuit.  Regulation and switching 

efficiencies are now included as 1η , 2η , pη , 3η , 4η , 5η .  The only line efficiency is 

now sη .  Because the DC to DC converter in very close proximity to the DC to DC 

converter, no line efficiency is necessary.  Additionally, although line efficiencies 

are not shown in Figure 5, they are assumed to be 0.90.  Justification for the 

efficiency values chosen are more fully in Chapter IV, Section D. 
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Figure 5.   TINYSCOPE EPS Equivalent Circuit 

Chapter II, Sections E and F present rationale for Figure 5.  Following a 

similar process as outlined for translating Figure 4 to Equations (2) through (5), 

Equation 6 can be derived from Figure 5.  A full development is shown in 

Appendix A. 

 
( )

31 2

1 2 3 4 5

1 2

;L d L c
SA L

p s c d c s d s
p c d

c d

P T P T PP PP where P
T T

T T
η η ηη η η η η η ηηη

ηη η η

≥ + = + +
+ ⎛ ⎞

+⎜ ⎟
⎝ ⎠

 (6) 

Equation 6 still assumes single orbit energy balance but it allows for multiple 

efficiencies present in a regulated EPS and it relaxes the requirement that the 

batteries are only discharged during eclipse.  However, Equation 6 does not 

account for the detrimental effects of shadowing, thermal impacts, radiation 

impacts, or sun incidence angle on solar cells.  Subsequent sections expand 

upon these issues with a complete model presented in Chapter III. 

B. POWER REQUIREMENTS OF COMPONENTS 

The power requirements of TINYSCOPE as a whole depend upon the 

power requirements of the individual components and how the components are 

used together for operations as depicted graphically in a load profile.  Together 

with the efficiency information of the EPS components, this data is used to 

determine critical elements of the EPS design, like required solar array and 
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battery size.  It is important to note that the list of components, their associated 

power requirements, and load profiles are all subject to change based on 

TINYSCOPE’s evolving design and verification of manufacturers’ reported 

specifications.  Component and subsystem power requirements, including level 

of voltage and current, must be kept up to date throughout the design process so 

that accurate information can be input into the simulation on an iterative basis. 

TINYSCOPE will have the standard set of satellite subsystems:  payload, 

structures and mechanisms subsystem (SMS), communications subsystem (CS), 

electrical power subsystem (EPS), thermal control subsystem (TCS), attitude 

determination and control subsystem (ADCS), and command and data handling 

subsystem (C&DH).  While some subsystem designs are advanced to the point 

where components have been chosen, other subsystems are not as advanced.  

In the latter case, representative voltages and currents are used. 

As of the time of this writing, the exact set of payload equipment had not 

been chosen.  However, so that a preliminary EPS design could proceed, the 

power requirements of a scientific/industrial camera were used as an 

approximation for the payload.  The SMS consists of the main 2U by 3U CubeSat 

structure along with the deployable solar arrays.  At this time, the SMS has no 

power requirements.  A Microhard 2.4 GHz radio model number IP2421 makes 

up the CS.  The radio manufacturer recommended using power requirements of 

a similar radio (model number Nano920) because the IP2421 is a new design.  A 

small beacon may be included in the CS in the future but is not presently 

included in the EPS power baseline.  Unlike the other subsystems, EPS power 

requirements are not static.  They vary as the load varies.  For this reason, 

efficiencies are used in lieu of set numbers.  Efficiencies of the EPS depend on 

the components used and will be discussed in detail in Chapter IV, Section D.  

Similar to the payload, a final set of equipment has not been determined for the 

TCS.  However, a Texas Instruments (TI) Mixed Signal Processor (MSP) model 

number 430 (MSP430) and a 2.5 W Minco commercial grade polyimide heater 
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strip are used as representative components.  As of the time of this writing, the 

ADCS subsystem was baselined with the following set of components: 

• (1) Novatel Global Positioning System (GPS) model number 
OEMV-1 

• (1) Analog Devices Inertial Measurement Unit (IMU) model number 
ADIS16400. 

• (1) AeroAstro Miniature Star Tracker 

• (1) Sinclair Interplanetary sun sensor model number SS-411 

• (3) Sinclair Interplanetary Nanosatellite Reaction Wheels model 
number RW–0.03–4 

• (1) TI MSP430 microcontroller 

The C&DH will use a TI MSP430 similar to the TCS and ADCS.  Table 1 shows a 

summary of the power requirements of the above components. 
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Name Model Manufacturer Voltage
(V) 

Current 
(A) 

Power 
(W) 

Note 

336x10-6 1.11x10-3 
Active Mode. Calculated 
from formula on page 13 
of data sheet. C&DH Controller MSP430 TI 3.3 

70x10-6 2.31x10-4 Low-power Mode 0.  
Current at 3 V. 

336x10-6 1.11x10-3 
Active Mode.  Calculated 
from formula on page 13 
of data sheet. ADCS Controller MSP430 TI 3.3 

70x10-6 2.31x10-4 Low-power Mode 0.  
Current at 3 V. 

0.07 0.35 Normal Mode 
IMU ADIS16400 Analog Devices 5 

600x10-6 3x10-3 Sleep Mode 

Star Tracker Miniature Star Tracker AeroAstro 5 0.4 2 
Voltage & current 
estimated from given 
power 

GPS Receiver OEMV-1 Novatel 3.3 303x10-3 1 
Current estimated from 
given voltage and given 
power. 

5 x10-3 25 x10-3 Average power.  Voltage 
assumed.   Sun Sensor SS-411 Sinclair Interplanetary 5 

15x10-3 75 x10-3 Peak power 

0.4 2 
Full Torque.  Current 
estimated from given 
voltage and given power. Reaction Wheels RW-0.03–4 Sinclair Interplanetary 5 

0.02 0.1 2000 RPM Steady State 
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Name Model Manufacturer Voltage
(V) 

Current 
(A) 

Power 
(W) 

Note 

336x10-6 1.11x10-3 
Active Mode.  Calculated 
from formula on page 13 
of data sheet. TCS Controller MSP430 TI 3.3 

70x10-6 2.31x10-4 Low-power Mode 0.  
Current at 3 V. 

TCS Heater HK5951 Minco 12 209x10-3 2.5 Area is 2.54 cm x 2.54 cm.

1x10-3 12x10-3 Sleep Mode 

95x10-3 1.14 Receive Only Transceiver IP2421 Microhard 12 

545x10-3 6.54 Send & receive 
simultaneously. 

Camera CSC12M25BMP19 Toshiba Teli Corp 12 417x10-3 5 
Current estimated from 
given power and given 
voltage. 

Frame Grabber   5 0.8 4 Estimated by payload 
engineer 

 

Table 1.   TINYSCOPE Equipment Summary
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C. LOAD PROFILES 

Simplified standard modes were developed for TINYSCOPE to facilitate 

the EPS modeling in this thesis.  The intent of this section is to establish the 

notional capacity requirements for each of the modes.  Additional work will need 

to be accomplished to ensure the operational feasibility of these modes.  The 

modes were developed based on the spacecraft’s mission with the power 

requirements of each mode assembled from the individual component power 

requirements.  The three modes discussed in this report are normal operations, 

launch and checkout, and contingency operations.  A summary of power 

requirements for each of the modes is presented below with a detailed 

accounting of voltage, current, power, and timing shown in Appendix B. 

1. Normal Operations 

The standard concept of operations for TINYSCOPE is currently an 

approximately ten minute imaging period that is preceded by a ten-minute 

payload warm-up period.  It is assumed in this discussion the warm-up period 

ends just as the satellite rises above the horizon and establishes 

communications with an in-theater ground station.  TINYSCOPE will be in a sun 

soak orientation at all times other than when it is in an active imaging period or in 

eclipse.  At the conclusion of the warm-up period, TINYSCOPE will receive a 

command load for the upcoming imaging period.  Once the command load is 

received, TINYSCOPE will slew to the first ground target and take an image.  

Once the first image is taken, the satellite slews to the second ground target and 

takes another image.  TINYSCOPE then slews back to the ground command 

center to downlink the image data before dropping below the horizon.  The 

following several paragraphs present a detailed description of equipment turn on 

and turn off times.  Refer to Figures 6, 7, and 8 below to follow along graphically 

with the textual description.  Figure 6 shows a top-level depiction of an entire  
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orbit while Figures 7 and 8 show detailed views of portions of the orbits.  The 

portions highlighted are annotated in the figure title.  EPS efficiencies are not 

included. 

The C&DH, ADCS controller, IMU, star tracker, GPS, and sun sensor are 

always on (3.43 W).  At 0 seconds, TCS heaters are on to help warm-up the 

payload (2.50 W), the transceiver is in sleep mode (12 mW), two reaction wheels 

are in high rate slew and one is in low rate to attain lock with the ground station 

(4.1 W), the payload camera and frame grabber are full on for warm-up (5 W and 

4 W respectively).  This is a total of about 19.0 W. 

At 20 seconds, the reaction wheels drop to an average slew load to 

maintain lock with ground station (1.2 W) while the transceiver increases to its 

transmit and receive simultaneously load (6.54 W).  The transceiver is 

downloading the previous orbit’s payload data (if it was missed on the last orbit) 

while simultaneously receiving the command load for the current orbit.  This net 

increase of 3.628 W increases the total load to 22.7 W. 

At 90 seconds, two reaction wheels increase to the full rate slew load of 

4.1 W to attain the first target.  This net increase of 2.9 W increases the total 

satellite load to 25.6 W. 

At 110 seconds, all reaction wheels decrease to their average slew load to 

maintain payload nodding while imaging the first target.  This is a net decrease of 

2.9 W reducing the total satellite load to 22.7 W. 

At 115 seconds, two reaction wheels again increase to the full rate slew 

load of 4.1 W causing a net increase of 2.9 W.  The purpose of this slew is to 

attain the second target.  The total satellite load is now 25.6 W. 

At 135 seconds, all reaction wheels decrease to their average slew load to 

maintain payload nodding while imaging the second target.  This is a net 

decrease of 2.9 W reducing the total satellite load to 22.7 W. 
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At 140 seconds, the payload camera, frame grabber, and heaters turn off 

reducing the load by 11.5 W.  Two reaction wheels increase to high rate slew to 

maximize the transceiver link margin with the ground station.  This increases the 

total load by 2.9 W.  The net total is a load of 14.1 W. 

At 160 seconds, all reaction wheels decrease to average slew loads to 

maintain maximum link margin.  This reduces the overall spacecraft load to 

11.2 W. 

At 620 seconds, a sun soak period begins.  The transceiver goes from its 

maximum transmit and receive load of 6.54 W to its sleep load of 12 mW.  This 

reduces the overall load to 4.64 W. 

Upon entering eclipse at 3,532 seconds, the 2.5 W heaters turn on 

increasing the total load to 7.14 W. 

At 5,216 seconds, the payload camera and frame grabber turn back on for 

warm-up increasing the load to 16.1 W. 

At 5,676 seconds, the process starts over. 

Not including EPS efficiencies or the loads during the sun soak period 

from 620 to 3,532 seconds, the batteries must support 7.78 Wh (or 0.54 Ah) of 

capacity.  The maximum draw is 1.78 A.  When efficiencies are included, the 

numbers rise to 10.9 Wh (or 0.76 Ah) and 2.43 A respectively. 
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Figure 6.   TINYSCOPE Representative Power Profile 
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Figure 7.   TINYSCOPE Imaging Power Profile, 0 to 650 Seconds 
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Figure 8.   TINYSCOPE Sun Soak & Warm-up Power Profile, 586 to 5283 
Seconds  

2. Launch 

A nanosatellite is typically powered off throughout prelaunch integration 

and transportation to LEO.  Before delivery to the launch site for prelaunch 

integration, TINYSCOPE will be fitted into a launch canister similar to California 

Polytechnic State University’s Poly Picosatellite Orbital Deployer (P-POD) shown 

in Figure 9, below.  To minimize the number of charge, discharge cycles the 

batteries incur, the flight batteries will be installed as close to launch as practical.  

Battery installation will likely be just before delivery to the launch canister 

integrator saving as much of the battery lifetime for operations as possible. 
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Figure 9.   P-POD, Post Deployment From [17] 

Depending upon the launch provider but for this discussion at 

approximately thirty minutes after launch, the transceiver will be turned on and 

put in its low power mode (12 mW).  The GPS receiver, star tracker, and sun 

sensor will be activated adding 3.08 W.  If necessary, the TCS heaters will be on 

(2.5 W) to compensate for a cold environment.  Finally, two reaction wheels will 

be in their high rate slew and one in low rate slew (4.1 W).  The total load is now 

about 10.0 W.  ADCS modeling has shown that this vehicle mode will last no 

longer than 90 minutes.  This results in a total of 15.0 Wh (or 1.05 Ah) with a 

maximum current draw of about 700 mA. 

3. Contingency Operations 

Recovering from an on-orbit contingency can take many forms depending 

upon the contingency.  One highly likely contingency is a single event upset 

(SEU) causing a reset of one or more of the subsystems causing the satellite to 

go into a safe mode.  For purposes of this discussion, it is assumed that 

TINYSCOPE has sustained an SEU causing it to shed as many of its loads as 

possible and go into a sun-soaking orientation, i.e. a safe mode.  Although the 
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duration of recovery operations is unknown, it is assumed that TINYSCOPE 

achieves a sun-soaking attitude within one orbit (approximately ninety minutes). 

While the state of charge of the batteries will be unknown when an SEU 

occurs, the loads during a contingency can be approximated.   All of the ADCS 

components will be active:  ADCS controller (1.11 mW), GPS receiver (1 W), IMU 

(0.35 W), star tracker (2 W), sun sensor (7.5 mW), and reaction wheels.  To 

conserve power, the reaction wheels will all be in a low rate slew using 0.3 W.  

The C&DH and TCS controllers will be on (2.22 mW) as well as the heaters 

(2.5 W).  Finally, the transceiver will be in a receive mode using 1.14 W.  The 

total power required is 7.37 W.  Total capacity required for ninety minutes of 

contingency operations is 0.768 Ah with a maximum current draw of 0.512 A. 

Some types of recoveries could take much longer—on the order of days.  

In that situation, the batteries will be able to support much longer periods of 

discharge.  This will be shown later when the capacity of the batteries is 

discussed in detail in Chapter II, Section F3. 

D. SOLAR ARRAY DESIGN 

Major considerations for how much power TINYSCOPE will be able to 

collect during its orbit are the size of the solar array, nominal photovoltaic cell 

efficiency, and length of eclipse periods.  These are dependent upon other 

important factors such as solar intensity variations (earth perihelion versus 

aphelion), solar incidence angle, thermal considerations, and radiation effects 

during the satellite’s lifetime.  These issues are discussed in detail below with 

important parameters used in the simulations of Chapter III. 

1. Solar Array Size 

Sizing the solar array can take two basic approaches.  In the first 

approach, the result of Equation 6 is divided by the amount of power developed 

by a particular solar cell per unit area.  This value is arrived at through application 

of Equation 7 [16], 
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 o cell
Wattsp S
Area

η ⎡ ⎤= ⋅ ⎢ ⎥⎣ ⎦
 (7) 

The amount of power per unit area, 0p , is the product of solar intensity and the 

nominal solar cell efficiency.  Adjustments are made due to the fact that the solar 

intensity varies by seasona and the solar cell efficiency may degrade over time 

due to, “thermal cycling in and out of eclipses, micrometeoroid strikes, plume 

impingement from thrusters, and material outgassing. [15]”  This results in an end 

of life (EOL) value for 0p  denoted EOLp .  The required area is then given by 

Equation 8 [15], 

 [ ]sa
EOL

PsaA Area
p

=  (8) 

The preceding method is valuable mainly for a satellite design with 

maximum freedom with regard to the size and orientation of the solar array.  A 

second approach may be used when size, mass, deployment vehicle, e.g. the P-

POD, and volume are driving elements of the design.  In this case, one may 

alternatively approach solar array design by investigating and optimizing the 

maximum area available for solar power collection.  The power profile is then 

limited to this top level of power.  Project TINYSCOPE has used a combination of 

the two approaches with an emphasis on the latter. 

Although several different solar array configurations were initially 

considered, the structural design developed in [5] was used because it offered 

the most solar array area.  Detailed justification for this choice is given in 

Chapter III.  Figure 10 below shows the preliminary structural design and 

Figure 11 shows an exploded structural design view. 

                                            
a Variation in solar intensity is about +/- 4% from the average. 
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Figure 10.   TINYSCOPE, Preliminary Structural Design Modified  After [5] 

 

Figure 11.   Exploded View of TINYSCOPE Preliminary Structural Design After [5] 

The dimensions in the following discussion were taken from NX CAD 

drawings developed by [5].  These dimensions are not strictly consistent with the 

dimensions of the 6U because the dimensions of the “six pack” had not been 

defined as of the time of this writing.  Thus, [5] used assumptions upon which this 

discussion depends.  The absolute outer dimensions of the plus and minus X 

faces are 21.35 cm in width and 34.6 cm in height resulting in a total surface area 
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for each face of about 740 cm2.  Doubling this results in about 1,480 cm2.  This 

number must be adjusted down by the openings required by the star tracker on 

the plus X face and the sun sensor on the minus X face.  The star tracker’s 

diameter is approximately 2.75 cm and the distance from the top of the structure 

to the bottom of the star tracker structure is approximately 7.1 cm (surface area 

of about 19.5 cm2).  The sun sensor’s diameter is approximately 1.6 cm and the 

distance from the top of the structure to the bottom of the sun sensor structure is 

approximately 5 cm (surface area of 8 cm2).  Subtracting out the surface area of 

the two rectangular shapes (27.5 cm2) results in approximately 1,450 cm2.  The 

plus Z face dimensions are 9.4 cm by 21 cm.  This adds another 197 cm2 of 

available area.  The total surface area available to place solar cells is about 

1,650 cm2. 

2. Cell Alternatives 

Both Emcore Corporation (Albuquerque, New Mexico) and Spectrolab 

Incorporated (Sylmar, California) manufacture photovoltaic (PV) cells in the 

United States.  Emcore and Spectrolab PV product lines are comparable in 

nearly every way (nominal efficiency, size, price, radiation degradation, thermal 

properties, etc.)  Table 2 below shows a summary of each manufactures product 

lines.  Full specification sheets can be found for Spectrolab’s 25.1% efficiency 

cells and Emcore’s 27% efficiency cells in Appendix C. 
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Company Solar Cell Name Nominal 

Efficiency 

Triple Junction Solar Cell 25.1% 

Improved Triple Junction (ITJ) 26.8% 

Ultra Triple Junction (UTJ) 28.3% 
Spectrolab 

NeXt Triple Junction (XTJ) 29.9% 

Advanced Space Solar Cell (ATJM) 27% 

Advanced Space Solar Cell (ATJ) 27.5% 

Space Solar Cell (BTJM) 28% 

Space Solar Cell (BTJ) 28.5% 

Space Solar Cell (ZTJM) 29% 

Emcore 

Space Solar Cell (ZTJ) 29.5% 

Table 2.   Available Solar Cells 

Because of Project TINYSCOPE’s stated goal of keeping costs down, the 

main criteria for selecting the model of solar cell to be analyzed further was to 

select the least costly, i.e. the lowest efficiency cell, that maintained single orbit 

energy balance.  The lowest efficiency cell lines from each manufacturer were 

selected for the remaining portion of this analysis. 

3. Radiation Impacts 

The European Space Agency (ESA) provides an online modeling tool to 

predict the 1 MeV electron fluence that solar cells will experience for a defined 

orbit.  These values are then compared with a solar cell manufacturer’s stated 

radiation degradation coefficients to determine an effective solar cell efficiency.  

The ESA’s Space Environment Information System (SPENVIS) [18] first requires 

an orbit to be defined, in this case a 500 km circular orbit with an approximate 

98° inclination.  Then, trapped electrons and protons are modeled with the 

National Space Science Data Center’s AE-8 and AP-8 models (accessible from 
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the SPENVIS website).  These models contain omnidirectional flux maps for 

electrons and protons trapped in Earth’s radiation belts based on empirical data 

from more than twenty satellites from the 1960’s through the 1970’s [19].  

Although much of the mapping is extrapolated, it remains a reasonable 

estimation and the current de facto standard. 

SPENVIS outputs fluence levels for up to a maximum thirty-day period.  

These values were then multiplied by twelve to calculate the fluence levels for 

TINYSCOPE’s one-year mission.  Since it is not known at this time if 

TINYSCOPE will be launched at solar minimum or maximum, Tables 3 and 4 

show the 1 MeV equivalent electron fluencies for both cases.  All information in 

the tables is referenced to a thickness of coverglass shown in the leftmost 

column.  Fluence levels are given in terms of the maximum power point of the 

solar cell maxP , the open circuit voltage OCV of the solar cell, and the short circuit 

current SCI  of the solar cell. 

Trapped Electrons 
g cm‐2 

mils  micron  Pmax Voc Isc Pmax, Voc, Isc  Pmax Voc Isc

0 0 0 1.127E+15 1.321E+15 1.571E+15 1.566E+12 1.125E+15 1.320E+15 1.568E+15
0.0056 1 25.41 1.079E+13 1.242E+13 1.035E+13 1.364E+12 9.428E+12 1.105E+13 8.981E+12
0.0168 3 76.36 4.663E+12 5.268E+12 3.490E+12 1.153E+12 3.510E+12 4.115E+12 2.336E+12
0.0335 6 152.27 3.431E+12 3.857E+12 2.323E+12 9.538E+11 2.477E+12 2.904E+12 1.369E+12
0.0671 12 305 2.681E+12 3.019E+12 1.662E+12 7.148E+11 1.966E+12 2.304E+12 9.469E+11
0.112 20 509.09 2.224E+12 2.515E+12 1.280E+12 5.314E+11 1.692E+12 1.984E+12 7.495E+11
0.1675 30 761.36 1.901E+12 2.160E+12 9.997E+11 3.912E+11 1.510E+12 1.769E+12 6.086E+11
0.335 60 1522.73 1.484E+12 1.709E+12 6.782E+11 1.858E+11 1.298E+12 1.523E+12 4.925E+11

Trapped ProtonsTotal Coverglass Thickness

 

Table 3.   Summary of 1 MeV Equivalent Electron Fluence (cm-2) at Solar Max 

Trapped Electrons 
g cm‐2 

mils  micron  Pmax Voc Isc Pmax, Voc, Isc  Pmax Voc Isc

0 0 0 1.142E+15 1.338E+15 1.572E+15 8.006E+11 1.141E+15 1.338E+15 1.571E+15
0.0056 1 25.41 3.502E+13 4.093E+13 3.448E+13 7.074E+11 3.431E+13 4.024E+13 3.377E+13
0.0168 3 76.36 1.244E+13 1.448E+13 1.012E+13 6.058E+11 1.184E+13 1.388E+13 9.518E+12
0.0335 6 152.27 6.832E+12 7.921E+12 4.826E+12 5.071E+11 6.324E+12 7.415E+12 4.320E+12
0.0671 12 305 4.238E+12 4.903E+12 2.543E+12 3.846E+11 3.854E+12 4.518E+12 2.158E+12
0.112 20 509.09 3.240E+12 3.750E+12 1.746E+12 2.875E+11 2.953E+12 3.462E+12 1.458E+12
0.1675 30 761.36 2.687E+12 3.114E+12 1.279E+12 2.116E+11 2.476E+12 2.903E+12 1.068E+12
0.335 60 1522.73 2.132E+12 2.484E+12 9.060E+11 9.907E+10 2.034E+12 2.384E+12 8.069E+11

Trapped ProtonsTotal Coverglass Thickness

 

Table 4.   Summary of 1 MeV Equivalent Electron Fluence (cm-2) at Solar Min 
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Proton fluence values are highest at solar minimum, while electron fluence 

levels are highest at solar maximum.  The most important values to observe are 

contained in the “Total” column.  Assuming three mil thick cover glass protection, 

the pertinent values from Table 3 are 4.663E+12 for maxP , 5.268E+12 for ocV , and 

3.490E+12 for scI .  From Table 4:  1.244E+13 for maxP , 1.448E+13 for ocV , and 

1.012E+13 for scI .  Close inspection of Spectrolab’s specification sheet for the 

25.1% efficiency cells shows a radiation degradation coefficient starting at 1E+14 

1 MeV equivalent fluence.  This is two orders of magnitude higher than the 

values for solar maximum and one order of magnitude greater than the values for 

solar minimum.  For this reason, no radiation degradation adjustment is made for 

the Spectrolab cells.  Emcore’s specification sheet for its 27% efficient cells 

shows a radiation degradation coefficient starting at 5E+13 1 MeV equivalent 

fluence.  This level is one order of magnitude higher than the fluence values at 

solar maximum and approximately five times higher than the values given at 

solar minimum.  Similar to the rationale for Spectrolab’s cells, no radiation 

degradation adjustment is made for the Emcore cells. 

4. Thermal Impacts 

Solar cells are least efficient when hot and most efficient when cold.  One 

can infer that cells are most efficient immediately after a satellite leaves eclipse 

and least efficient after the satellite’s solar array has been sun soaking the 

longest.  It has been observed in [15] that non-body mounted, flat solar panels in 

LEO have a typical temperature of 67 °C.  Body mounted solar cells are about 

5 °C hotter.  It is estimated in [15] that solar cell efficiency can degrade by as 

much as 0.5% per degree above 28 °C.  Analytical models can further refine 

these estimations. 

The first analytical model, taken from page 44 of [16], gives a steady state 

value for deployed solar arrays in a low earth orbiting satellite, 
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The variables have the following meanings:  Fα  and Bα  are the absorptivities of 

the front side and back side of the array; S is the solar flux (power per unit area); 

φ  is the angle of incidence of sunlight; a  is a factor applied to the Earth thermal 

flux to approximate the albedo flux; aF  is the product of multiple radian measured 

angles describing how much of the solar array’s area is pointing at the earth’s 

albedo; eF  is the product of multiple radian measured angles describing how 

much of the solar array’s area is pointing at the earth; Fε  and Bε  are the 

emissivities of the front-side and back-side of the solar array; E  is the earth flux 

(power per unit area), η  is the nominal solar cell efficiency; pf  is the solar cell 

packing factor; β  is the angle the orbit plane makes with the sun direction unit 

vector; υ  is an angle that defines where the satellite is in its orbit relative to the 

solar sub point; ρ  is the angular radius of the earth at the satellite’s altitude; λ  is 

the incidence angle of the earth’s thermal flux on the solar array; and σ  is the 

Stefan-Boltzman constant.  Several of these parameters are explained more fully 

in Chapter III when the dynamic simulation is developed. 

Upon re-inspection of Figure 10, one can see that this model has some 

applicability to TINYSCOPE’s steady state temperatures if it is assumed that the 

solar panel “wings” are thermally isolated from the spacecraft body.  Strictly 

speaking, this is not correct since the underside of the solar panels have the 

spacecraft body within its field of view.  Because radiative heat transfer will occur 

between the body and the solar panel, one should include appropriate margin in 

the design to compensate for the model’s shortcomings. 

Packing factor should be set no higher than 93% [20].  A value of 80% is 

used here.  The value for the solar power per unit area varies with the position of 
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earth in its orbit around the sun.  The highest value, at perihelion, i.e. winter, is 

1,414 W/m2 while the lowest value, at aphelion, i.e. summer, is 1,322 W/m2 [21].  

Nominal solar cell efficiency, solar cell absorptance, and solar cell emittance are 

taken from the cell manufacture’s specification sheet.  Array backside 

absorptance and emittance is chosen as a design parameter.  Values of 0.17 and 

0.92 are chosen from Table 11–46 of [15].  The Stefan-Boltzman constant has a 

value of 5.67E-8 while the sun incidence angle is chosen as zero because 

TINYSCOPE will be in sun soaking orientation 90% of the time.  Standard values 

of the albedo adjustment factor and the earth’s thermal flux are provided [16] in 

as 0.3 and 326 W/m2.  Because Emcore did not make its absorptance and 

emittance values available, Spectrolab’s were used.  The beta angle is chosen 

as zero while the earth thermal flux angle is chosen as 45°.  In reality, this value 

will be constantly changing but 45° is chosen as a reasonable average value.  

The angular radius of the earth is set by the satellite altitude and a value of zero 

is chosen for the starting position of the satellite in its orbit relative to the sub-

solar point (υ ).  These values were substituted into an Excel spreadsheet (see 

Appendix D) to arrive at the values in Table 5. 

 Summer Solstice Winter Solstice 

Manufacturer 
Spectrolab, 

25.1% 

Emcore, 

27% 

Spectrolab, 

25.1% 

Emcore, 

27% 

Temperature 55.7 °C 54.3 °C 60.5 °C 59.0 °C 

Table 5.   Predicted Solar Cell Temperatures 

The second model that was used to predict solar cell temperature comes 

from Figure 47 of [5].  Although an “apparent” external temperature of 124 °C 

was predicted on page 95, a more accurate prediction for the internal solar panel 

“wing” temperature from page 96 and 97 is used here.  The internal “wing” 

temperature is 317.5 K or 44.35 °C.  This result is of the same order of  

 



 32

magnitude as that given by Equation 9 and the guideline given on page 414 of 

[15].  In an effort to provide some level of margin, Equation 9’s values will be 

used.  

An adjustment to Spectrolab and Emcore’s nominal efficiencies can now 

be made.  Specified currents and voltages are adjusted based on the following 

linear approximation, 

 ( )NewValue SpecificationValue T TempCoefficient= + Δ ×  (10) 

Equation 10 is applied for both Spectrolab and Emcore at the summer and winter 

solstices and using the maximum power voltage and current at BOL for 28 °C.  

Table 6 summarizes these calculations, below. 

Spectrolab Emcore Spectrolab Emcore Note

1 Predicted Temperature [°C] 55.7 54.3 60.5 59.0 Equation 9
2 Base Temperature [°C] 28 28 28 28 Manufacturer Specification Sheet
3 Temperature Delta [°C] 27.7 26.3 32.5 31.0 Line 1 ‐ Line 2

4 Voltage Coefficient [V/°C] ‐0.0067 ‐0.0059 ‐0.0067 ‐0.0059 Manufacturer Specification Sheet
5 Nominal Max Power Voltage [V] 2.28 2.29 2.28 2.29 Manufacturer Specification Sheet
6 Adjusted Max Power Voltage [V] 2.09 2.13 2.06 2.10 Line 5 + (Line 4 * Line 3)

7 Current Coefficient [μA/cm2/°C] 9.0E‐06 1.1E‐05 9.0E‐06 1.1E‐05 Manufacturer Specification Sheet
8 Nominal Max Power Current [A] 0.0149 0.0160 0.0149 0.0160 Manufacturer Specification Sheet
9 Adjusted Max Power Current [A] 0.0151 0.0163 0.0152 0.0163 Line 8 + (Line 7 * Line 3)

10 Nominal Efficiency 0.251 0.270 0.251 0.270 Manufacturer Specification Sheet

11 AMO [W/cm2] 0.132 0.132 0.141 0.141 Solar constant at Air Mass Zero (AM0)
12 Power [W] 0.032 0.035 0.031 0.034 (Line 6) * (Line 9)
13 Adjusted Efficiency 0.239 0.262 0.221 0.243 (Line 12) / (Line 11)

Summer Winter

 

Table 6.   Solar Cell Adjusted Efficiencies 

At the summer solstice, solar power per unit area is lowest giving rise to 

the potential that the least amount of power will be collected.  However, the 

temperature of the cells is lower than at winter solstice.  This lower temperature 

has the effect of slightly increasing the efficiency of the cells offsetting the 

reduced collection due to the low power per unit area.  Conversely, at the winter 

solstice, solar power per unit area is high giving the potential to collect more  
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power.  However, the higher solar intensity is offset due to the higher solar cell 

temperature it causes reducing cell efficiency.  The final result is that the winter 

solstice scenario is worst for both types of cells. 

5. Manufacturing Impacts and Final Adjusted Efficiencies 

Final adjusted efficiencies are calculated as the product of the nominal 

efficiency, the radiation adjustment, the temperature adjustment, and design and 

assembly adjustment.  Design and assembly activities introduce losses 

attributable to circuit connections, line losses, and other imperfections.  

References vary but efficiencies in the range of 77% to 90% are reasonable [15].  

A value of 85% was chosen for TINYSCOPE’s EPS design.  Table 7 summarizes 

the final adjusted efficiencies.  Lines one through five calculate the overall 

efficiency while lines six through 11 focus on the specific impacts to voltage and 

current.  One must calculate the individual voltage and current impacts so that a 

subsequent series and parallel calculation can be made. 

To maintain an overall 0.85 adjustment to the power of the solar cell for 

design and assembly, the square root of 0.85 was applied to both voltage and 

current, i.e. lines seven and ten.  While this probably does not represent the 

actual physical adjustment that will occur, it is a reasonable engineering 

approximation.  Final efficiencies are listed in Line 14.  Observe that Spectrolab 

cells in the Winter are the least efficient.  This is due to the fact that the cells will 

be at a higher temperature which is reflected in the lowest efficiency listed on 

Line three. 
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Spectrolab Emcore Spectrolab Emcore

1 Nominal Efficiency 0.251 0.27 0.251 0.27
2 Radiation Adjustment 1 1 1 1
3 Temperature Adjustment 0.954 0.972 0.881 0.899
4 Design and Assembly Adjustment 0.85 0.85 0.85 0.85

5  Final Adjusted Efficiency 0.204 0.223 0.188 0.206

6 Temperature Adjusted Voltage [V] 2.09 2.13 2.06 2.10
7 Square Root of Design & Assy 0.92 0.92 0.92 0.92
8 Final Adjusted Voltage [V] 1.93 1.96 1.90 1.94

9 Temperature Adjusted Current [A] 0.015 0.016 0.015 0.016
10 Square Root of Design & Assy 0.922 0.922 0.922 0.922
11 Final Adjusted Current [A] 0.014 0.015 0.014 0.015

12 Fin. Adj. Voltage * Fin. Adj. Current 0.027 0.029 0.027 0.029

13 Solar Constant at Air Mass Zero [W/cm2] 0.132 0.132 0.141 0.141

14 Final Adjusted Efficiency 0.204 0.223 0.188 0.206

Summer Winter

 

Table 7.   Final Adjusted Solar Cell Efficiencies 

6. Series and Parallel Requirements 

The number of solar cells required in series is determined by the level of 

voltage required by the power management and distribution (PMAD) system.  

The number of parallel strings of series cells is dependent upon the overall 

current requirement of the entire satellite.  Adjusted values for voltage and 

current must be used so that an EOL series and parallel requirement is 

calculated.  A general purpose spreadsheet was developed to calculate the 

number of series and parallel strings required.  The spreadsheet also makes it 

easy to compare the area required by this calculation to the area available on the 

satellite.  To demonstrate the use of the spreadsheet in Table 8, the pertinent 

values for TINYSCOPE were used. 

Lines 1 and 2 are set to the values listed because the PMAD system that 

will be discussed in Chapter II, Section E2 requires this level of voltage to charge 
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the batteries.  Line 3 lists an adjustable margin level set by engineering judgment 

to increase the overall voltage level.  The overall power requirement listed on 

Line 5 is taken from the Matlab/Simulink© model that is explained in detail in 

Chapter III.   

Spectrolab Emcore Spectrolab Emcore Note

1 Battery Nominal Voltage [V] 14.4 14.4 14.4 14.4 Battery Spec Sheet
2 Voltage Required to Charge Battery [V] 16.8 16.8 16.8 16.8 Battery Spec Sheet
3 Margin [%] 3.0% 3.0% 3.0% 3.0% Engineering Judgement
4 Net Voltage Required [V] 17.3 17.3 17.3 17.3 Line 2 + (Line 2 * Line 5)
5 Average Power [W] 27 27 27 27 From Matlab/Simulink Model
6 Current Required [A] 1.56 1.56 1.56 1.56 Line 5 / (Line 4)
7 Margin [%] 3.0% 3.0% 3.0% 3.0% Engineering Judgement
8 Net Current Required [A] 1.61 1.61 1.61 1.61 Line 6 + (Line 6 * Line 7)

9 Area of Solar Cell [cm2] 30.0 30.0 30.0 30.0 From solar cell spec sheet

10 EOL Voltage [V] 1.93 1.96 1.90 1.94 Table 7, Line 8

11 EOL Current Density [A/cm2] 0.014 0.015 0.014 0.015 Table 7, Line 11

12 Series 9 9 10 9 Ceiling (Line 4 / Line 10)
13 Parallel 4 4 4 4 Ceiling [Line 8 / (Line 9 * Line 11)]
14 Cells Required 36 36 40 36 Line 12 * Line 13

15 Cell Area Required [mm2] 1080 1080 1200 1080 Line 9 * Line 14

16 Total Area Available on "Wings" [mm2] 1450 From [Ortiona]
17 Packing Factor 0.8 Prescribed

18 Effective Area Available [mm2] 1160 Line 16 * Line 17

Summer Winter

 

Table 8.    Series and Parallel Requirements 

Line five’s value of 27 W is an adjusted value from the Matlab/Simulink© 

model.  The model shows that about 30 W is developed when the satellite is 

pointing directly at the sun.  Because the series and parallel calculation include 

margin for both voltage and current, some portion of the 30 W must be used for 

this margin.  Engineering judgment was used to apportion approximately 10% 

power margin evenly between voltage and current (10% of 30 W is 3 W).  The 

current required was simply calculated as the power developed divided by the 

Net Voltage Required.  Similarly to the voltage, a margin was included. 
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Line nine is taken directly from the solar cell manufacturer’s specification 

sheet.  Although Emcore does not state what sizes its solar cells are available in, 

Spectrolab’s 25.1% cells are available in sizes up to 30 cm2. 

Lines 10 and 11 were taken directly from Table 7 as the fully adjusted 

values that are expected to be seen from the solar cells.  The required string 

voltage is then divided by Line 10 and rounded up to calculate the number of 

cells required in series.  Similarly, the required overall current is divided by the 

product of Line 11 and Line nine and then rounded up to calculate the number of 

parallel strings required.  Line 14 is the product of Lines 12 and 13 while Line 15 

is product of Line 14 and Line nine.  This number, the cell area required, must be 

smaller than the area available after the total area available has been adjusted 

by the planned packing factor. 

Lines 16 through 18 show the method used to arrive at an available area 

of 1,160 cm2.  One can observe that this number is larger than all columns of 

Line 15 except for Spectrolab in the Winter.  The requisite number of cells are 

listed in Lines 12 and 13.  Spectrolab in the Winter requires one more cell in 

series due to the negative impacts that a higher temperature have on the cells at 

perihelion.   

E. POWER MANAGEMENT AND DISTRIBUTION 

1. Alternatives Considered 

Although several COTS products were carefully assessed for feasibility as 

part of TINYSCOPE’s EPS design, custom designs built by students or space 

system manufacturers were ruled out from the start.  The primary reason was to 

stay consistent with Project TINYSCOPE’s stated goal of using COTS or slightly 

modified COTS.  The following readily available systems were evaluated: 

• CubeSat Power, NanoSat Power, SmallSat Power, Clyde Space 
Ltd. (http://www.clyde-space.com/products) 

• Small Satellite Power System, Surrey Satellite Technology Ltd. 
(SSTL) 
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(http://www.sstl.co.uk/assets/Downloads/Datasheet%20Powersyste
m%20contact%20sheet%20%5BNovember%202008%29.pdf) 

• Integrated Power Electronics, Broad Reach Engineering 
(http://www.broadreachengineering.com/eps06.html) 

• Integrated Battery and Power System (IBPS), Ocean Server 
Technology Inc. (http://www.ocean-server.com/smallbattery.html) 

• Integrated Power and Data Ring (IPDR), Sierra Nevada 
Corporation (http://www.spacedev.com/) 

Clyde Space, based in Glasgow, Scotland, manufactures several power 

systems that have wide applicability to small and very small satellites.  In order of 

output power, these are CubeSat Power, NanoSat Power, and SmallSat Power 

lines.  The CubeSat Power line is designed for use with spacecraft that have 

average orbit loads from 1 W to 20 W.  Although there are 1U and 3U variants, 

only the 3U variant is addressed here.  The system provides regulated voltages 

of 3.3 V and 5 V at up to 1.2 A and unregulated battery voltage up to 10 V with a 

maximum of 2.9 A.  The maxima cannot be supplied simultaneously.  There is 

also an option to provide 12 V at 300 mA and 50 V at 1 mA from the unregulated 

battery bus.  The solar array input uses a peak power tracking scheme where up 

to 9 V may be provided by the solar arrays.  Clyde Space also makes a 3U 

lithium polymer battery system at 8.2 V and up to 7.5 ampere-hours (Ah) of 

capacity.  The main EPS system has a mass of 86 g to which 204 g for the two 

series, three parallel battery packs is added, resulting in a total mass of 290 g.  

The EPS board has dimensions of 9.5 cm by 9 cm by 1.5 cm.  The battery 

portion has similar dimensions as it stacks on top of the main EPS boards.  The 

total cost is £2,050 for the batteries and £2,600 for the EPS board.  At current 

currency conversion rates, this is about $7,700.b 

The NanoSat Power system is also compatible with average orbit power 

up to 20 W.  It provides 5 V at up to 1.5 A on the 5 V bus and 7 V to 10 V at up to 

10 A on the battery bus.  The maxima cannot both be supplied simultaneously.  It 

                                            
b Google Finance currency converter was used on 15 Nov 2009.  Entered “4650 GBP in 

USD” in input field. 
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uses a peak power tracking scheme with a 10 V to 20 V input.  Batteries must be 

selected separately that meet the maximum charge current (1.5 A) and voltages 

(12.5 V) supplied by the NanoSat Power system.  The system dimensions are 

23 cm by 12.2 cm by 2 cm with a mass of approximately 500 g.  The 

manufacturer reports that the NanoSat Power system has been used 

successfully in space on two previous missions.  Unlike the CubeSat EPS, the 

cost of the NanoSat EPS was not readily available. 

The SmallSat Power system is designed for slightly larger spacecraft with 

an average orbital power requirement of about 20 W to 300 W.  Accordingly, it is 

much larger at 30 cm by 15 cm by 7 cm with a mass of about 1.5 kg.  Its battery 

bus runs from 16 V to 35 V at a maximum of 15 A current and the 5 V bus runs at 

a maximum current of 2 A.  Separately selected batteries can be charged from 

30 V to 60 V with a maximum current of 2.5 A.  The manufacturer reports that 

over twenty previous space missions have successfully used the SmallSat Power 

system.  Unlike the CubeSat EPS, the cost of the SmallSat EPS was not readily 

available. 

SSTL, headquartered in Guildford, United Kingdom, is a manufacturer of 

complete satellites as well as satellite subsystems.  Its focus is on small satellites 

but not nano- and picosatellites.  Its Small Satellite Power System is designed for 

average orbital load requirements up to 1.6 kW.  The concept of the design is 

similar to that used by Clyde Space with an unregulated battery bus as well as a 

fully conditioned 5 V and 28 V bus.  The unregulated bus provides 28 V +/- 6 V 

with each battery charge regulator able to handle 80 W.  The smallest system 

would consist of two modules, a battery charge regulator module and a power 

conditioning module, each with dimensions of 30 cm by 30 cm by 3 cm.  The 

battery charge regulator has a mass of 2.25 kg while the power conditioning 

module has a mass of 1.65 kg.  The system would be able to provide upwards of 

240 W of power (there are six charge regulators per module).  Twenty-eight volt 

batteries would have to be purchased separately.  The manufacturer reports that  
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its power system has extensive space flight heritage and has an expected design 

life of seven years.  Unlike the CubeSat EPS, the cost of the Small Satellite 

Power System was not readily available. 

Broad Reach Engineering with facilities in Tempe, Arizona and Golden, 

Colorado focuses mainly on integrated avionics products but also provides 

systems engineering services.  Both the integrated and standalone versions of its 

EPS provide for solar array switching, power distribution, regulation, and control.  

Up to 14 solar array strings with inputs of 6.9 A may be controlled.  The Charge 

Control & Solar Array Interface Card (SACI) provides three voltages at 5 V and 

+/-15 V with a total current output of up to 20 A.  The physical dimensions of the 

basic system are 11.2 cm by 21.8 cm by 3.6 cm with a total mass of 

approximately 320 g.  Batteries must be purchased separately.  The 

manufacturer reports that seven previous space missions have successfully used 

the SACI power system.  Unlike the CubeSat EPS, the cost of the Broad Reach 

Engineering power system was not readily available. 

Massachusetts-based Ocean Server markets its IBPS as a terrestrial 

based modular system used extensively for autonomous underwater vehicles 

and remote data collection [22].  The company offers many different power 

systems with capabilities ranging from supplying a small notebook computer up 

to 25,000 Wh autonomous submarines.  Initial research led to the evaluation of a 

four channel Mini Battery Controller used in conjunction with a DC to DC voltage 

converter.  Although the controller is designed to be supplied by an AC wall 

adapter at 18 V and 5.56 A, an appropriately sized solar panel can be used. The 

controller outputs an unregulated maximum current of 13.25 A at 12 V.  This is 

optionally input to a DC-DC converter board where regulated voltages of 3.3 V, 

5 V, and +/- 12 V are provided at up to10 A, 10 A, and 12 A respectively.  The 

maximum current for each voltage cannot be used simultaneously.  The 

maximum power from the DC board is 144 W.  Batteries may be purchased 

through Ocean Server that are specially designed to work with the IBPS system.  

The standard batteries are 14.4 V lithium ion in a four series, three parallel 
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configuration.  The 12 cell batteries provide 6.6 Ah or 95 watt-hours (Wh) of 

capacity.c  The basic system can use up to four battery packs.  The dimensions 

of the combined base board and DC board are 7.4 cm by 9.1 cm by 4 cm.  Its 

mass is less than 200 g.  The standard battery is 22.3 mm in height by 285 mm 

in length by 58.9 mm in width with a mass of approximately 700 g.  The controller 

and DC converter cost $532.62 as a pair while a single battery costs $187.45.  

The system has no space flight heritage or space rating but has been 

successfully used for several years in Professor Marcello Romano’s Spacecraft 

Robotics Laboratory at NPS. 

Sierra Nevada Corporation, headquartered in Sparks, Nevada, developed 

the IPDR Space Plug and Play Avionics (SPA) to be modular in design with the 

capability to manage all aspects of power collection, storage, regulation, and 

distribution.  Because the IPDR is very new, definitive specifications were 

impossible to obtain.  However, enough informal information was gathered to 

make an informed decision as to the appropriateness of its implementation for 

TINYSCOPE. 

From a hardware perspective, each IPDR is identical.  Software and 

firmware introduces various functionality.  The IPDR can simultaneously be used 

for power control and to support loads.  Each IPDR is capable of supporting eight 

4 A devices or two 10 A devices at an unregulated voltage of 28 V (+6 V/-4 V).  

The maximum load current is limited to 32 A.  The maximum input current is 

limited to 40 A.  All IPDRs are capable of solar array switching and battery 

charging and discharging.  Thus solar array sections may be connected up to the 

40 A maximum and input to the IPDR.  The IPDR then controls the solar array 

input and battery charge, discharge cycle.  IPDRs, solar array sections, and 

batteries can be connected together to support the loads attached to a particular 

IPDR.  As more loads are required, additional pairings of IPDR, solar array  

 

                                            
c To convert between Ah and Wh, multiply the number of Ah by the battery’s nominal voltage.  

In this case, 6.6 Ah X 14.4 V = 95 Wh. 
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sections, and batteries may be created.  The company reports that the system 

has previous space flight heritage.  Unlike the CubeSat EPS and the IBPS, the 

cost of the IPDR was not readily available. 

2. Selected System 

The above systems were evaluated relative to volume, mass, maximum 

load power, voltage provided, current provided, and up-front cost.  Initially, the 

EPS was allocated no more volume than one-half of a 1U cube, i.e. 500 cm3.  

Because the spacecraft is intended to conform to the CubeSat standard as much 

as possible, either the length or the width dimension had to be no more than 

10 cm.  For example, a board with dimensions of 9 cm by 20 cm was not ruled 

out but one with a width and height of 20 cm was.  This removed Sierra Nevada’s 

IPDR, SSTL’s Small Satellite Power System, Broad Reach’s SACI system, and 

Clyde Space’s SmallSat and NanoSat power systems. 

An initial estimate of the allocated EPS mass was no more than 1 kg for 

the PMAD and batteries.  Both of the remaining systems, Clyde Space’s 

CubeSat power and Ocean Server’s IBPS, met this requirement.  The complete 

3U version of the CubeSat power system has mass of only 290 g.  The IBPS has 

a total mass of 846 g.  While this mass is much higher, it still falls well below the 

initial mass allocation.  Additionally, initial review of the IBPS documentation 

indicated that it might be possible to use much lower capacity batteries giving 

rise to the hope that the mass could be much lower.  

Referencing Figure 6, TINYSCOPE’s average orbital load is approximately 

7.35 W while its maximum load is 25.6 W.  CubeSat Power is rated up to an 

average required load of 20 W while the IBPS is rated up to 144 W.  Both appear 

to be able to handle the requisite levels of average required power.  It is not as 

clear that both can supply the maximum draw when TINYSCOPE is imaging, 

slewing, and communicating.  Although CubeSat Power states it can output 10 V 

at 2.9 A, it is unknown if the required level of power can be reached after DC to 
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DC conversion to the correct voltages.  The IBPS, on the other hand, supplies 

the required voltages at much higher power levels. 

From the component descriptions above and electrical requirements listed 

in Table 1, one can see that the IBPS provides all of the required regulated 

voltages at adequate current levels.  Conversely, CubeSat power supplies 3.3 V 

and 5 V at sufficient current levels but only a very small current for 12 V. 

Finally, the upfront cost of the IBPS is an order of magnitude less than the 

CubeSat Power system.  Additionally, as will be discussed in Chapter II, 

Section F, several lower capacity, lower cost batteries may be used with the 

IBPS lowering the overall system cost even more.  It should be noted that a 

detailed trade-off analysis between the IBPS and CubeSat Power was not 

conducted.  This analysis would include the costs associated with hardware 

testing to reduce mission risk for the IBPS and the costs of modifying the 

CubeSat Power system to provide the required voltage and current levels.   

Careful consideration of the reasons presented above led the EPS 

engineer and subsequently the TINYSCOPE team as a whole to choose Ocean 

Server’s IBPS power control system.  Chapter IV of this thesis details an initial 

attempt at risk reduction through hardware testing for the IBPS.  Detailed 

observation of the IBPS configuration led to the development of Figure 5, 

TINYSCOPE EPS Equivalent Circuit, and subsequently Equation 6, the 

mathematical expression for the required power of the solar array. 

3. Solar Array Power Control 

The topic of power control relates to the method used to control the 

transfer of power from a power source to an energy storage device and/or a 

dissipative load.  In this case, the power source is an array of PV cells and the 

energy storage device is a bank of battery cells.  Because batteries are highly 

sensitive to overcharge and undercharge conditions, PV cells are not normally 

connected directly to battery cells.  In a worst-case scenario, this could cause 

battery damage and catastrophic failure of a satellite mission.  The power source 
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to energy storage interface can be controlled in many different ways.  However, 

section 11.4.4 of [15] defines two basic methods:  peak power tracking (PPT) and 

direct energy transfer (DET).  Both methods are used on modern satellites with 

DET being much simpler and cheaper whereas a PPT system is designed to 

extract the maximum amount of power out of the PV array as possible. 

The basic method used to allocate power to the load in a DET system is 

shunt regulation.  Current is diverted away from spacecraft loads by shunt 

resistors, which, along with the load, appear in parallel to the power source.  The 

shunt resistors dissipate power not used by the loads.  For thermal reasons, the 

resistor load bank is typically placed outside the main spacecraft bus, often on 

the solar panel yoke.  TINYSCOPE’s very small form factor, with no yoke 

available, would make an external load bank impossible.  An internal load bank 

could be considered but would greatly complicate the spacecraft thermal 

analysis. 

A PPT system attempts to compensate for the fact that a PV cell’s 

maximum power point varies with operating conditions.  The most critical factors 

are irradiance, i.e. solar intensity, and operating temperature.  Decreasing 

irradiance shifts the current down with little effect on the voltage (reference 

Figure 12).  Increasing temperature shifts the voltage down with little effect on 

the current (reference Figure 13). 
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Figure 12.   Solar Panel V-I Characteristic vs. Irradiance From [23] 

 

Figure 13.   Solar Panel V-I Characteristic vs. Temperature From [23] 

The basic idea of a PPT system is to match the continuously varying 

voltage and current output of a PV cell to that of the energy storage device 

and/or load.  However, since the peak power point cannot be accurately 

predicted, many different algorithms exist for finding the best approximation.  

This approximation is then used to tune a DC to DC converter that is placed 
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between the solar array and the battery and/or load.  The efficiency of the PPT 

depends in large part on how good the PPT system estimates the peak power 

point of the PV cells along with the circuit efficiency of the components used in 

the DC to DC conversion.  This efficiency is most important from a subsystem 

level design. 

The chosen power management and distribution system is a COTS 

product that may be modified to operate from a solar panel by following the steps 

given in a company technical note [24].  However, the documentation does not 

state if the system is a PPT or a DET.  Subsequently, most of the efficiencies 

shown in Figure 5 are unknown.  Chapter IV focuses on characterizing the type 

of power control used as well as discovering operational efficiencies. 

F. BATTERY DESIGN 

1. PMAD Battery Requirements 

The Ocean Server IBPS is designed around an original equipment 

manufacturer (OEM) battery provided by Inspired Energy, Inc. of Newberry 

Florida.  The basic battery is 14.4 V, 6.6 Ah in capacity, and 700 g in mass.  Two 

different dimensions are available:  22.3 mm height by 285 mm length by 

58.9 mm in width (“long pack”) or 21.7 mm height by 167.5 mm length by 

107.3 mm width (“flat pack”).  The flat pack will not fit inside TINYSCOPE’s 

satellite bus because two dimensions exceed 10 cm.  However, it is very unlikely 

that the packs will be used as received from the manufacturer because of out 

gassing concerns when placed in a vacuum.  Both configurations are a twelve 

cell, lithium ion battery in a four-series, three parallel configuration.  Each cell is 

nominally 3.6 V with 2.2 Ah of capacity.  Stacking four cells in series provides 

14.4 V, i.e., 3.6 x 4 = 14.4.  Three of these strings provide 6.6 Ah of total 

capacity, i.e., 2.2 x 3 = 6.6.  The cells conform to the standard 18650 cell size 

with dimensions of 18 mm in diameter and 65 mm in height.  Figure 14 shows  
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both OEM battery sizes one can choose from (“long pack” on top, “flat pack” 

bottom right) along with a representative 18650 lithium ion cell from inside the 

case (bottom left). 

 

Figure 14.   IBPS OEM Batteries With 18650 Cell 

It is common to reference charging and discharging to the Ah capacity of 

the battery.  In the case of the Inspired Energy battery, 6.6 Ah of capacity 

correlates to a “1 C” rate of 6.6 A.  Thus if the battery is capable of discharging at 

6.6 A, this is equivalent to saying it is capable of discharging at “1 C.”  Under 

specified temperatures, the batteries are actually capable of discharging at up to 

8 A (or 1.2 C) and charging at 4 A (or 0.61 C).  The charge and discharge rates 

are very important to consider when designing load profiles because if they are 

exceeded, battery damage can occur.  As the operating temperature goes below 

-10 °C or above 50 °C during discharge, the battery current must be derated 

according to manufacturer’s recommendations.  Current derating must also be 

applied during charge except the following temperatures apply:  0 °C and 45 °C.  

The battery may be stored between -20 °C and 60 °C.  These limitations must be 

accounted for during the operational concept development and thermal analysis 

of TINYSCOPE. 
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Microchips on the batteries work in concert with the IBPS hardware and 

software to conform to the System Management Bus and Smart Battery Data 

Specifications [25].  As per the specifications, the batteries communicate dozens 

of data points to the IBPS which can then be accessed via serial communication 

with the IBPS.  Data like voltage, current, temperature, state of charge, and 

number of cycles are monitored while other parameters like minimum voltage to 

shutdown and maximum battery current to shutdown can be commanded. 

The BB-04 model of the IBPS can accept up to four 6.6 Ah capacity 

batteries for a total system capacity of 26.4 Ah.  This level of capacity would 

entail over 2.4 kg of mass just for the batteries and is not practical for 

TINYSCOPE.  The BB-04 autonomously handles all aspects of battery charging 

and discharging sourcing the power for the load first from the external power 

supply and then from the batteries when required.  In the case of TINYSCOPE, 

this would mean that the BB-04 would use the batteries during eclipse and when 

a low amount of solar power is being collected from the solar panels. 

Similar to the IBPS itself, the OEM batteries were not specifically designed 

for operation in space.  However, the battery design conforms to the United 

Nations international transportation regulations for lithium ion batteries.  To 

conform to this standard, each battery’s design must pass a series of tests 

known as the UN T-Tests [26].  Eight separate tests including altitude simulation, 

thermal shock, vibration, shock, short circuit, impact, overcharge, and forced 

discharge make up the T-Tests (reference Appendix E for a summary of specific 

criteria).  Analysis of the test criteria show that some of the testing is far beyond 

what is expected for TINYSCOPE.  One example of this is the shock test.  The 

procedure is listed as, “Half sine shock of peak acceleration of 150 G duration 

6 ms.  3 shocks in positive direction & 3 shocks in negative direction in each of 3 

perpendicular axes:  A total of 18.”  The test is run on a sample size of eight fully 

charged batteries and then the same eight fully discharged batteries.  The pass 

requirement is, “No mass loss, leakage, venting, rupture, disassembly, or fire and 

OCV [open circuit voltage] after test >= 90% OCV before test.”  Some of the tests 
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include operational usage of the batteries while others do not.  For example, the 

batteries are not being used during vibration and shock tests but are being used 

during the short circuit and overcharge tests.  While additional on-site battery 

testing would likely be performed, the T-Tests provide a high degree of risk 

reduction. 

Despite the likelihood that Inspired Energy’s batteries will work in 

TINYSCOPE’s application, any batteries that conform to the electrical 

requirements of the BB-04 IBPS may be used.  However, this would require the 

implementation of SMBus and Smart Battery specifications on separately 

purchased cells.  The TINYSCOPE program may choose to do this if it is 

deemed too risky to use Inspired Energy’s non-space rated lithium ion cells.  Two 

manufacturers are identified here for future reference:  Quallion, LLC (Sylmar, 

California) [27] and Saft S.A. (Bagnolet, France) [28].  Both firms market space-

rated 3.6 V lithium ion cells that have ample space flight heritage.  Many different 

levels of capacity and charge, discharge rates are available. 

2. Alternative Batteries 

While the long pack version of Inspired Energy’s OEM battery could work 

for TINYSCOPE, there are several potential shortcomings to this strategy.  First, 

the battery size would be very difficult to integrate into TINYSCOPE’s very small 

satellite bus.  At almost 30 cm long, one battery would run almost the entire 

length of TINYSCOPE’s 3U frame.  The placement of all other components 

would be impacted along with the highly undesired effect of increasing the 

complexity of the thermal properties of the entire spacecraft.  Secondly, the long 

pack’s relatively large electrical capacity (6.6 Ah) would be an overall inefficient 

use of mass and space on the satellite compared to what is required to supply 

the loads.  For example, it is estimated that there would be less than a 5% depth 

of discharge at this high of a capacity.  Lastly, an issue that will be elaborated on 

in Chapter IV is the single point failure nature of using only one battery port on 

the BB-04.  The BB-04 has inherent redundancy on its printed circuit board 
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(PCB) with respect to battery control because it has two chips that each control 

two batteries each.  If only one battery is used, a single failure in the microchips 

on the battery or on the controlling microchip on the BB-04 will cause the EPS to 

stop functioning.  Using one very large battery provides a lot of capacity but no 

defense against the situation described above.  Conversely, using multiple 

battery ports does provide some protection.  However, the use of multiple long 

pack batteries is impossible on TINYSCOPE. 

As mentioned previously, the IBPS product line, including the BB-04, is 

designed around the use of 14.4 V battery packs.  Inspired Energy makes 

several other model batteries ranging from 7.2 V to 25.2 V and 21.6 Wh up to 

95 Wh.  Other readily available 14.4 V batteries include capacities of 37 Wh (or 

2.6 Ah) and 75 Wh (or 5.2 Ah).  The dimensions of these batteries are 22.9 mm 

in height by 86.4 mm in length by 78.7 mm in width and 22.9 mm in height by 

152.4 mm in length by 78.7 mm in height respectively.  The 2.6 Ah battery has a 

mass of 220 g while the 5.2 Ah battery has a mass of 470 g.  One string of four 

series cells make up the 2.6 Ah battery while the 5.2 Ah battery adds an 

additionally string, i.e. four series cells in two parallel strings.  While these 

batteries conform to the UN T-Tests, it is not known if the BB-04 will work 

properly with them.  This is investigated further in Chapter IV, Section C, Battery 

Compatibility Test.  

3. Depth of Discharge and Number of Cycles 

A critical aspect of designing a satellite’s EPS is the number of charge-

discharge cycles a battery can be expected to last.  Generally speaking, the 

higher the depth of discharge (DOD), the lower the number of cycles the battery 

will last.  The exact relationship between these two variables depends on many 

parameters but most significantly on battery chemistry.  Figure 11–11 in [15] 

shows this relationship for nickel cadmium (NiCd) and nickel hydrogen (NH2) 

batteries.  Figure 15, below, reproduces this graph. 
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Figure 15.   Depth-of-Discharge versus Cycle Life for NiCd & NH2 From [15] 

Because the above data is not readily available in the literature for lithium 

ion batteries, manufacturer data must be used to estimate battery lifetime.  

Manufacturers typically report the number of full discharge cycles at which 80% 

of initial capacity is maintained.  For example, Inspired Energy’s batteries are all 

rated at 300 cycles.  This means that the manufacturer guarantees that the 

6.6 Ah battery will maintain 5.28 Ah, i.e., 0.8 x 6.6 = 5.28, after 300 cycles of 

100% discharges followed by 100% charge periods.  Because 100% discharge 

cycles will not be used in LEO, the expected number of cycles can be adjusted 

according the following procedure for Inspired Energy’s batteries [29]. 

 
( ) ( ) [ ]
( ) ( ) [ ]

[ ]( )
( )

Absolute Number of Cycles Nominal Battery Capacity Total Cycle Capacity

Number of Cycles Capacity Expected ToUse Total Cycle Capacity

Total Cycle Capacity
Number of Cycles

Capacity Expected ToUse

× = ∗

× = ∗

∗
=

(11) 

The absolute number of cycles is the point at which the capacity no longer 

maintains a linear relationship with the number of cycles.  For the manufacturer 

of Inspired Energy’s battery cells, from the first charge, discharge cycle through 

the 300th, the capacity falls off from 100% to 80% linearly.  Nominally, after the 

300th charge, discharge cycle, the rate of change of the retained capacity falls off 

at a faster pace.  At some point beyond 300 charge, discharge cycles, the slope 
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becomes very steep rendering the battery useless.  For Inspired Energy 

batteries, the absolute number of cycles is approximately 450.  The nominal 

battery capacity is the manufacturer’s rating for battery capacity.  In the case of 

the 6.6 Ah battery, this value is 6.6.  Applying Equation 11 for the example above 

gives the following results: 
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It is important to note that this method will only give a rough order of 

magnitude of the number of cycles the batteries will last.  Nonetheless, this 

estimation is important for predicting spacecraft EPS lifetime.  To apply this 

technique to TINYSCOPE, the expected capacity to be used must be known.  

Additionally, this number must take into account battery dis/charge, and circuit 

efficiencies.  Chapter II, Section C and Appendix B list the details of the 

formulation of the expected capacity to be used during normal operations, launch 

and checkout, and contingency operations.  The 0.7553 Ah value for normal 

operations will be used in this example since this will be TINYSCOPE’s long-term 

mode.  Observe that the expected DOD is 0.7553 14.5%5.2
Ah

Ah = during normal 

operations. 

The last value that must be known (or assumed) is the nominal battery 

capacity.  It has already been stated that the 6.6 Ah long and flat pack batteries 

will not likely be used.  However, one probable configuration is two 2.6 Ah 

batteries connected to two separate BB-04 battery ports.  This gives a total 

capacity of 5.2 Ah.  Equation 11 is now applied: 
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TINYSCOPE has a threshold lifetime of one year and a target lifetime of 

two years [5].  A 500 km altitude orbit has an orbit period of 
3

22 rπ
μ

 = 5,676.8 sec 

= 94.6 min = 1.577 h.  This means that there are 24
1.577

h
h

orbit
 = 15.21 orbits in 

each 24-hour day.  This equates directly to the number of charge-discharge 

cycles, i.e. there are 15.21 charge-discharge cycles per day with 5,555 cycles in 

one year and 11,110 cycles in two years.   Thus, it can be seen that Inspired 

Energy’s 3,098 cycles falls about 45% short of the threshold requirement for 

mission lifetime. 

A mitigating factor to this potential shortfall is the fact that the rule-of-

thumb presented in Equation 11 produces the same order of magnitude as the 

required 5,555 cycles.  Equation 11 predicts that the batteries will last 

approximately 200 days or about 6.5 months.  This is a substantial amount of 

time that would definitively show the feasibility of Project TINYSCOPE.  Because 

the estimate produces an order of magnitude calculation, it is feasible that the 

batteries could last up to 10,000 cycles.  This would be longer than one year and 

eight months.  In the end, the Principle Investigator would need to decide if this is 

a risk that can be accepted or if further testing or other mitigation is needed. 

G. MASS BUDGET 

The mass of the entire EPS is made up of the solar cells, the protective 

cover for the solar cells, the aluminum structure that the solar cells are mounted 

to, the PMAD electronics, the batteries, and an estimate for the harnessing to 

interconnect the above components.  The solar cell mass per unit area was given 

by the manufacturer.  This value was then multiplied by the product of the 

packing factor and the overall solar array area to arrive at a mass for the solar 

cells.  The cover was conservatively estimated to be the same mass as the solar 

cells.  The mass for the PMAD electronics was given by Ocean Server.  Inspired 

Energy, the battery manufacturer, gave a value of 220 g for its ND2054 model.  
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The batteries are discussed in great detail in the following section but notionally 

two batteries are included here.  The density of aluminum was multiplied by 

2 mm (notional thickness of solar panel “wings”) to arrive at a mass per unit area.  

This was multiplied by the total area of the solar array “wings.”  Finally, a 4% 

overhead estimate for harnessing was included.  Table 9 summarizes the mass 

budget of TINYSCOPE’s EPS. 

 

Table 9.   TINYSCOPE EPS Mass Budget 



 54

THIS PAGE INTENTIONALLY LEFT BLANK  

 



 55

III. SIMULATION 

A. TOP LEVEL DESCRIPTION 

In order to gain better insight into how the EPS designed in Chapter II will 

operate in its intended orbit, a detailed Matlab/Simulink© model from [16] was 

customized and extended for TINYSCOPE.  To achieve a high level of fidelity, 

many of the parameters from Chapter II are used in various blocks of the 

Simulink© model.  Solar intensity, load levels, power collected, and battery state 

of charge are plotted versus time and investigated. 

It is useful to view the EPS model in terms of seven categories of blocks. 

• Basic orbit blocks are depicted in cyan. 

• Sun on or off and the intensity of sun when on are depicted in 
yellow. 

• Solar cell physical constants, solar cell orientation, and solar array 
size are depicted in orange. 

• Load power and timing are depicted in green. 

• Power management and distribution (PMAD) electronics, 
efficiencies, and battery parameters are depicted in red. 

• Blocks that are for data collection within the model are depicted in 
gray. 

Several blocks of the model depend upon a parameter definition file that is 

loaded when the simulation is first run.  The full model is shown in Figure 16 on 

the following page.  The justification for each of the blocks is discussed in turn 

below while the full listing of Matlab code is shown in Appendix F. 
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Figure 16.   Integrated Matlab/Simulink© EPS Model After [16] 
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B. BASIC ORBIT 

The cyan blocks have only one varying output—the satellite’s angle 

starting from an arbitrary position around the earth with respect to time.  This 

value is derived for a circular orbit by equating the radial component of 

acceleration of a rotating body with the gravitational acceleration of the satellite.  

Equation 11–21 of [30] states that the radial component of linear acceleration ra  

is the product of the square of the angular velocity of a rotating body ω  and the 

distance at which that body is from the center of rotation r. 

 2
ra rω=  (12) 

Equation 14–12 of [30] states that the gravitational acceleration ga  is 

 2g
GMa
r

=  (13) 

Where G is the gravitational constant (
211

26.67 10 N mx kg
− ), M the mass of the 

earth ( 245.974 10x kg ), and r is the square of the distance between the orbiting 

body and the center of the earth. 

Setting Equations 12 and 13 equal to each other and solving for the 

angular velocity ω  results in, 

 3r
μω =  (14) 

Where μ  has the value 398,600 
3

2
km

s  and r is equal to the sum of earth’s 

radius (6378.15 km) and TINYSCOPE’s altitude (500 km).  The block labeled 

“wo” is set to Equation 14.  This value, along with the initial position of the 

satellite in its orbit “nuo,” is input to the time integral block labeled “v,” i.e. nu.  

The value for “nuo” is arbitrary and is used in practice only to adjust how long 

until the TINYSCOPE model enters eclipse. 
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The two remaining cyan blocks are made up of one block that is 

prescribed indirectly, “rho,” and one that is prescribed directly, “beta.”  The 

angular radius of the spherical earth as seen from the spacecraft, “rho,” is 

defined in Equation 5–16 of [15] as, 

 sin E

E

R
R h

ρ =
+

 (15) 

Equation 15 is formulated using the definition of the sine function and inspection 

of Figure 17, below, 

 

Figure 17.   Geometric Relationship Between Earth and Spacecraft 

The constant, rho, is used in the determination of when the spacecraft is in direct 

sunlight. 

The final cyan block, “beta,” is critical to accurately predicting the varying 

length of eclipse periods for LEO satellites as they orbit the earth and as the 

earth orbits the sun.  The beta angle is defined as the angle between the sun’s 

solar rays and the spacecraft orbit plane.  Although a formal development of the 

definition of beta is beyond the scope of this discussion, one form is given in [31] 

as, 

 ( ) ( ) ( ) ( )sin 1 cos sin sin 1 cos sin
sin cos sin

2 2
i e u w i e u w

e i uβ
− + + −⎡ ⎤ ⎡ ⎤

= + −⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (16) 

Where e is the tilt axis of the earth, i.e. 23.44°, i is the satellite inclination 

(discussed below), u is the right ascension of the sun in the ecliptic plane, and w 
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is the right ascension of the ascending node of the satellite’s orbit.   The values 

for e and i are constant while the parameters u and w are periodic.  Because the 

terms in Equation 16 are products of sinusoids, one might guess that Equation 

16 will produce the rough shape of a sinusoid.  The physical interpretation of the 

beta angle is graphically illustrated in Figure 18.  Two bounding cases for eclipse 

length are useful to observe.  A 90° beta, the satellite will never be in the earth’s 

shadow, i.e., it will not enter eclipse.  However, as beta approaches 0°, eclipses 

will be longest. 

 

Figure 18.   Illustration of Beta Angle 

The length of time a satellite spends in eclipse has obvious thermal and 

power generation implications.  If the beta angle is not calculated during the 

simulation, as depicted in Figure 16, then a realistic value must be carefully 

chosen.  Additionally, since a given beta corresponds to a given position of the 

earth in orbit around the sun, a realistic value for solar intensity must also be 

sensibly chosen.  Both of these values could be calculated in real-time during the 

simulation; however, this would add unnecessary complexity.  A prudent 

approach is to choose a worst-case scenario based on the combination of beta 
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angle, solar intensity, and solar cell adjusted efficiency.  Figure 19 uses Equation 

16 to plot the beta angle for TINYSCOPE and models the solar intensity at the 

top of earth’s atmosphere as a sinusoid varying from 1,322 W/m2 to 1,414 W/m2 

as described in [21].d  While TINYSCOPE’s sun-synchronous orbit requires an 

inclination of approximately 97.4°, a right ascension of ascending node (RAAN) 

of 0° is chosen arbitrarily. 

 

Figure 19.   Solar Intensity and Beta Angle versus Day of Year 

The graph shows that the smallest beta, i.e., longest eclipses, occur about 

midway between 21 March and 21 June.  At this point, the solar intensity is 

approximately 1,335 W/m2.  Referencing Table 7, one can see that solar cell 

efficiency at this point is near its highest, however.  Conversely, lowest solar cell 

efficiencies will be near the point where the solar intensity is highest, i.e., at 21 

                                            
d Complete Matlab script is contained in Appendix E. 
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December.  At this time, the beta angle is about 3°.  The simulation should be run 

for the two cases listed below to determine which is the worst case scenario. 

1. Case 1 
• Solar intensity = 1,335 W/m2 

• Beta angle = 0° 

• Solar Cell Efficiency = 0.223 
2. Case 2 

• Solar intensity = 1,414 W/m2 

• Beta angle = 3° 

• Solar Cell Efficiency = 0.203 
It should be noted that inclination values other than 97.4° will change the 

shape of the beta function in Figure 19.  This implies the above analysis must be 

accomplished for each specific case considered for TINYSCOPE.  The present 

analysis assumes the above cited conditions.  The Matlab code in Appendix G 

can be used for the general case. 

C. SOLAR INTENSITY 

The yellow blocks determine when the spacecraft is in eclipse and thus 

when the solar array will not be collecting power.  The block labeled “S” was just 

discussed and will be set to the two cases listed above.  The “Power Factor” 

block is a simple way to set solar collection to zero when TINYSCOPE is 

imaging.  This is done to overlap in time with the power profile (developed in 

Chapter II, Section C).  That is, the power factor coefficient is set to zero for the 

first 620 seconds of the simulation.  Thus, regardless of what level of power the 

model collects during the first 10 minutes and 20 seconds, the product of the 

“Power Factor” and “ saP ” blocks is zero.  After 620 seconds, the “Power Factor” 

goes to one to allow any power level collected to pass through to the red PMAD 

logic blocks. 
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The remaining yellow blocks relate the current angular position of the 

satellite on a circle, labeled “nu,” to the point at which the satellite goes into 

eclipse.  Slide 67 of [16] states a satellite is in eclipse if the following condition is 

true, 

 coscos
cos

ρυ
β

< −  (17) 

Thus, as the satellite’s current angular position, nu, is updated during the 

simulation, Equation 17 is applied to determine if the satellite is in eclipse or not.  

The physical interpretation is that the satellite is in the shadow of the earth.  This 

results in an “on-off” condition that is then scaled by the “solar constant” value of 

either 1,335 W/m2 or 1,414 W/m2 as discussed above. 

D. SOLAR ARRAY ORIENTATION & SOLAR CELL CONSTANTS 

The orange blocks determine the solar incidence angle on the solar array, 

which is then scaled by the area of a solar panel and the number of panels.  This 

is further scaled by the packing factor of the solar array and the solar cell 

efficiency.  For the present case, the area is taken from Chapter II, Section D1 

and the number of panels is set to one.  The packing factor and cell efficiency are 

taken from Chapter II, Section D4 and D5, respectively. 

To find the incidence angle of the sun on the solar panels, the attitude of 

the solar panel must be compared with the direction of the sun’s rays.  The 

components of the solar unit vector written in the spacecraft body frame are 

given on slide 69 of [16] as 

 ( ) ( ) ( )0 0 0cos sin sin cos cosS X Y Zβ υ β β υ= − − −  (18) 

Where S is the unit solar vector and X0, Y0, and Z0 are perpendicular axes of the 

spacecraft body frame.  This is illustrated in Figure 20, below, 
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Figure 20.   Solar Unit Vector in Spacecraft Body Frame After [16] 

The vector dot product is then calculated for Equation 18 and the 

components of the surface normal vectors of the solar panels.  Because 

TINYSCOPE will be sun soaking except for the 620 second imaging period, the 

“orientation” block simply contains the unit solar vector dot product with itself.  

This effectively sets the solar array to be always pointing at the sun.  As 

discussed above, solar power is “turned off” for the 620 second imaging period 

through the use of the yellow “Power Factor” block.  The contents of the 

“orientation” block are shown below, 

Out 1

1

S1Relay 1Goto

[S]

From 2

[S]

From

[S]

Dot Product

s_hat1

 

Figure 21.   Contents of “orientation” Block 

E. LOADS 

The load subsystem block contains the data from Table 1 together with 

the timing profile of Chapter II, Section C, Normal Operations.e  This information 

was used to develop Figures 6 through 8.  Additionally, line efficiencies and DC 

to DC converter efficiencies are also included in the load block.  Including these 

                                            
e Loads were defined with Matlab repeating table blocks. 
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efficiencies here treats them as if they are part of the load.  When this is done, 

they are not needed for the PMAD control logic discussed in the next section.  

Although rough estimates for these efficiencies were used initially, hardware 

testing provided more accurate values that were incorporated as testing 

progressed.  The contents of the load subsystem is shown below, 

 

Figure 22.   Contents of Load Subsystem Block 

F. POWER MANAGEMENT AND DISTRIBUTION, EFFICIENCIES, AND 
BATTERY 

The control logic of the PMAD is represented by red blocks in the 

Simulink© model.  This section of the model takes the loads and the power 

collected by the solar array as inputs and determines if the batteries are being 

charged or discharged.  Several of the red blocks are designated as efficiencies 

of the Ocean Server IBPS BB-04 equipment.  Figure 5 and Equation 6 were used 
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to determine the appropriate placement of these efficiencies in the Simulink© 

model.  Some were placed in the green load block while some were associated 

with the red blocks and were subsequently used in the “logic” block. The exact 

values of all efficiencies will be dealt with in Chapter IV.  It is very useful to refer 

to Figure 5 during the remaining discussion of this section. 

The heart of the PMAD control logic are the “logic,” “Charge,” and 

“Discharge” blocks.  The batteries will charge if the power from the solar arrays is 

greater than the power required by the load net of any applicable efficiencies.  

Conversely, the batteries will discharge if the product of the power from the solar 

arrays and any efficiencies is less than the power required by the load.  Using the 

nomenclature of Figure 5 this can be stated mathematically as, 

 

Chargeif

Dischargeif

L
s sa

p

L
s sa

p

PP

PP

η η

η η

>

<
 (19) 

One important assumption here is that the voltage provided by the charge circuit 

is sufficiently higher than the battery voltage to allow charging.  In an actual 

circuit, batteries cannot be charged unless the charge voltage is above the 

battery’s voltage.  Because the dynamic model prescribes TINYSCOPE’s attitude 

as sun soaking, the system must be designed so that the charge voltage will be 

higher than the battery’s instantaneous voltage.  This was done in the series 

calculation of Chapter II, Section D6. 

The appropriate efficiencies depend on the reference point chosen in the 

equivalent circuit of Figure 5.  Inspecting Figure 4 and Equation 5 (the general 

case) and comparing them to Figure 5 and Equation 6 (TINYSCOPE’s specific 

case), the point just before the power controller efficiency pη  in the BB-04 power 

controller was chosen as the reference point. 

During charge, the power from the solar array will be split between power 

going to the load (net of efficiencies) and power going to the batteries (also net of 

efficiencies).  This is expressed mathematically in Equation 20, below, 
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1

bcL
sa

p s c s

PPP
η η η ηη

= +  (20) 

Observe that the DC to DC converter and line losses are not shown in Equation 

20.  Again, this is because they are contained in the green “load” block and not 

the PMAD control logic blocks.  Solving for the power going into the batteries 

produces the following equation, 

 1
L

bc sa s c
p

PP P η ηηη
⎛ ⎞= −⎜ ⎟
⎝ ⎠

 (21) 

Equation 21 is contained in the red block labeled “Charge.” 

During discharge, the power from the solar array is not sufficient to supply 

the required load power.  Thus, the batteries must be used to partially or fully 

supply the load.  In either case, no power is being delivered from the solar arrays 

to the batteries.  The power required by the load may be expressed as, 

 2L sa s p bd d pP P Pη η η η η= +  (22) 

Again, note that the specific DC to DC converter efficiencies for each voltage 

provided and the line losses are not included here because they are contained in 

the green “load” block.  Solving Equation 22 for the power supplied by the battery 

results in, 

 
2

L
sa s

p
bd

d

P P
P

ηη
η η

−
=  (23) 

Note that if no power is being supplied by the solar array, as during eclipse or 

extreme slewing during sunlight, the second term of the numerator goes to zero.  

Equation 23 is contained in the red block labeled “Discharge.” 

The red block labeled “logic” contains the following test condition, 

 L
sa s

p

PP η
η
⎛ ⎞

− ⎜ ⎟⎜ ⎟
⎝ ⎠

 (24) 
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When Equation 24 leads to a positive number, the “Switch 1” block passes 

through the value from the “Charge” block.  Conversely, when Equation 24 leads 

to a negative number, the “Switch 1” block passes through the value from the 

“Discharge” block. 

The next block, “Convert to amp-sec,” divides the value with units of watts 

coming from the “Switch 1” block to ampere-seconds by dividing by the nominal 

battery voltage of 14.4 V.  Ampere-seconds are then converted to Ah by dividing 

by 3,600 seconds/hour.  The “Battery Capacity” block is a time integration block 

that starts out at a prescribed value and cannot rise above another prescribed 

value.  The values entered are derived from the battery capacity used in the 

calculations of Equation 11.  Two single string batteries that each have four 

2.6 Ah cells in series produce a total capacity of 5.2 Ah. 

G. PARAMETER FILE 

The contents of the parameter file are included in Appendix F for 

reference. 

H. RESULTS 

Figure 23, below, depicts the output from the simulation run over three 

consecutive orbits using the initial conditions for Case 1.  Figure 24, below, 

depicts the output from the simulation run over three consecutive orbits using the 

initial conditions for Case 2. 
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Figure 23.   EPS Simulation Output, Case 1 
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Figure 24.   EPS Simulation Output, Case 2
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The top panels of Figures 23 and 24 show data related to power 

collection.  The solid blue line shows when TINYSCOPE is in or out of eclipse 

and the dashed green line shows how much power TINYSCOPE is collecting.f  

Case 1 collects about 35 W while Case 2 collects about 34 W.  The difference in 

start times is caused by the “Power Factor” block being set to zero for the 620 

second imaging period.  Physically, this is when TINYSCOPE will be slewing; 

conservatively, TINYSCOPE will not be collecting any power.  In reality, it is likely 

that TINYSCOPE will be collecting some power but this is not investigated here.  

The first 620 seconds were chosen because it would allow no battery charging 

before imaging loads would have to be supplied by the batteries. 

The bottom panels of Figures 23 and 24 show the SOC of the battery and 

the load profile (adjusted for load line efficiencies and DC to DC converter 

efficienciesg) for the same period, of three orbits, as above.  Overlaying the solid 

blue load profile on the dashed green SOC plot gives insight into the path of the 

SOC line.  For example, the larger the jump in load power required, the more 

negative the slope of the SOC.  One of the most critical aspects of the SOC line 

is whether it returns to the maximum level of 5.2 Ah by the end of the lighted 

portion of an orbit.  If, as in this case, the SOC returns to 100% by the end of one 

orbit, single orbit energy balance has been achieved guaranteeing Equations 1 

through 6 will hold. 

Another important characteristic of the SOC line is the ratio of its minimum 

level to its maximum level.  This is the battery depth of discharge (DOD).  It can 

be seen that the battery SOC is initially at 5.2 Ah and drops to a minimum value 

of 4.45 Ah.  The batteries maintain 85.5% of their charge resulting in a DOD of 

14.5%.  One can see that this DOD agrees with the value developed in 

Chapter II, Section F3.  Thus, approximately 3,000 cycles or about 6 ½ months 

should be attainable. 
                                            

f The green line is collected in the Simulink© model with the gray block labeled, “sun_on_off.”  
The blue line is collected with the gray block labeled, “power_collected.” 

g This load profile is higher than what is shown in Figures 6 through 8 because Figures 23 
and 24 include the load line efficiencies and the DC to DC converter efficiencies.  Reference 
Figure 22 to observe the placement of these efficiencies. 
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I. SIMULATION CONCLUSION 

One can see immediately that the results of the two cases are very close.  

This would not have been known without accomplishing the simulation, however.  

Based on both cases achieving single orbit energy balance and very reasonable 

battery DOD, the design of Chapter II using the 27% Emcore cells is 

recommended for TINYSCOPE.  It should be noted that the simulation is based 

on many interdependent variables and care should be taken to update these 

parameters as required to ensure accurate results.  With an established model 

for TINYSCOPE’s EPS, it may now be run iteratively to establish sensitivities to 

solar array size, efficiencies, load level and timing, beta angle, orbit altitude, etc. 
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IV. HARDWARE TESTING 

A. INTRODUCTION 

Whereas Chapters II and III focused on the design and simulation of the 

overall EPS of TINYSCOPE, Chapter IV examines the operating characteristics 

and possible limitations of the IBPS in the space environment.  This task is 

required for any EPS design effort, but is even more critical when using the 

Ocean Server IBPS since it was designed for terrestrial use.  Several questions 

arise immediately as to the ability of the IBPS to operate in space.  Some of 

these questions are: 

• Can the IBPS operate from a solar array? 

• Can the IBPS operate using lower mass, and therefore lower 
capacity, batteries? 

• What are the efficiencies of the components? 

• Can the IBPS withstand the vibrations associated with a launch to 
low earth orbit? 

• Can the IBPS survive TINYSCOPE’s predicted thermal 
environment? 

• Can the IBPS survive operating in a vacuum? 

Most of these questions cannot be answered definitively in one chapter of 

a thesis—nor is that the intent.  The purpose here is to conduct a preliminary 

investigation into the feasibility of successfully using the IBPS in a low-cost, 

moderate-risk space mission.  This chapter will provide a reasonable amount of 

data and analysis upon which to base a sensible decision to either use or not use 

the Ocean Server IBPS.  One question that is not addressed here is the 

susceptibility of the IBPS to a high energy radiation environment. 

Before considering each of the above questions in turn, it is important to 

recall the motivation for looking into Ocean Server’s IBPS.  In particular, it stems 

from the guiding principles introduced in Chapter I, Section B2, i.e. use of COTS, 

short mission life, and low cost.  It has been shown throughout Chapter II that the 
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IBPS meets all of these criteria.  With that notion as a starting point, the 

hardware was tested and characterized as outlined in the subsequent sections. 

B. DETAILED HARDWARE DESCRIPTION 

Before delving into the tests that were conducted, it is important to have a 

basic understanding of the system design and intended operation of the IBPS in 

general and the BB-04, DC-123 combination in particular.  The information in this 

section is derived from Ocean Server documentation, namely [32], [33], and [34] 

except as noted. 

An IBPS consists of one or more printed circuit boards, batteries, external 

power, and an external monitoring station.  A typical setup for the boards is a 

base board, represented by “BB,” and a DC to DC converter board, represented 

by “DC.”  Several different models of the IBPS provide various voltage, current, 

and power levels.  The base board may be used alone but provides unregulated 

voltage.  If a DC to DC converter board is used in conjunction with a base board, 

+/- 5% regulated voltage is provided but at an efficiency cost.  In general, the DC 

board is more efficient when converting to a voltage that is close in magnitude 

and sign to the input voltage.  This will be quantified in Section D, below.  A 

representative IBPS is depicted in Figure 25. 
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Figure 25.   IBPS Components After [33] 

The base board is designed to work with an AC adapter that provides 18 V 

at 5.56 A as an input.  A serial communications connection may optionally be 

established to monitor system telemetry and command several system settings.  

Up to four OEM batteries may be connected to the BB-04.h  Several different 

models of DC to DC converter may be connected to the base board, to which the 

load is then connected.  Although 3.3 V, 5 V, +/- 12 V, 24 V, and 48 V are 

available on some models, the DC-123 provides only the first four voltage levels.  

The basic system specifications show that the BB/DC system is rated to work at 

up to 144 W from 0 °C to 50 °C.  No rating is given with respect to vibration, 

radiation, or expected lifetime. 

The telemetry available from the IBPS includes a dozen or so nonvolatile 

random access memory (NVRAM) data points along with detailed battery data 

including: 

                                            
h Recall that the batteries are 14.4 V, 6.6 Ah, 95 Wh and are made up of 18650 lithium-ion 

cells.  Ocean Server contracts with Inspired Energy to provide the 12 cell (three parallel strings of 
four series cells) batteries. 
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• A Smart Battery Data Specification Status codei (reported by 
battery) 

• A code indicating charge power present, fully charged, fully 
discharged, or no good power (reported by battery) 

• Voltage of battery (reported by battery) 

• Current of battery—negative number implies discharge (reported by 
battery) 

• Temperature of battery from thermocouple inside battery case 
(reported by battery) 

• Charge percentage of battery (reported by battery) 

• Capacity of battery in Ah (reported by battery) 

• Total current of all batteries connected to the base board 
(calculated by base board) 

• Average voltage of all batteries connected to the base board 
(calculated by base board) 

• Average charge of all batteries connected to the base board 
(calculated by base board) 

• Battery charge/discharge indicator (applied by base board, based 
on information reported by battery) 

• Run time to empty in minutes and hours or time to fully charge in 
minutes and hours (calculated by base board based on information 
reported by battery and what the base board senses as the load) 

Because much of the above data is collected by the batteries and then passed to 

BB, it can be monitored independently and subsequently compared to what BB 

reports via serial communications to check for proper operation of BB. 

The following figures show close-ups of the base board (Figure 26) and 

the DC to DC converter board (Figure 28) as delivered, i.e. no modifications.  

Note the high number of passive and active components on the boards as well 

as the use of nylon connectors on each board.j 

                                            
i See [50] for further information on this specification. 
j The white connectors are Molex brand in the “Mini-fit Jr.” line of products.  Reference [51] for 

additional details on representative Mini-fit Jr. Molex connectors. 
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Figure 26.   Base board Power Controller, BB-04FR, Top Down View 

Familiarity with the nomenclature of the connections will become very 

important in subsequent sections to maintain clarity during test setup and results 

discussions.  Starting from the top left and moving in a counter-clockwise 

direction, connector nomenclature is listed below and is shown schematically in 

Figure 26: 

• J1:  Eight pin, Pins 2 and 4 are used as an On/Off switch 

• J5:  Two pin (positive voltage and ground), external power supply 
input.  Charges batteries on J22 and J17 

• J22:  Five pin, battery connector input 

• J17:  Five pin, battery connector input 

• J10:  10 pin, communications interconnect between BB-04 and DC-
123 

• J12:  Five pin, battery connector input 

• J21:  Five pin, battery connector input 

• J7:  Two pin (positive voltage and ground), external power supply 
input.  Charges batteries on J21 and J12 
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• J13:  Four pin (two positive voltage, two ground), power 
interconnect between BB-04 and DC-123 

• J8:  10 pin (converts to standard RS-232), serial communications 
input and output 

• J9:  10 pin, factory use for programming onboard microprocessor 
only 

Figure 27 shows a line drawing version of the picture in Figure 26.  The 

connectors listed above are labeled with circular callout symbols in Figure 27.  

Comparing Figures 26 and 27 clearly identifies and shows the positions of the 

connectors. 

 

Figure 27.   BB–04 Drawing From [33] 

The DC-123 board rests on top of and on standoffs that are positioned 

through the corners of the BB-04.  Again starting on the top left of Figures 28 and 

29 and moving in a counter-clockwise direction, the connector nomenclature is: 

• J6:  Four pin (two 12 V power supply pins and two ground pins), 
load output 

• J20:  20 pin (ATX pinout [35]), load output 
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• J10:  10 pin, communications interconnect between BB-04 and DC-
123 

• J2:  Eight pin (four positive voltage, four ground), external power 
input 

• J1:  Eight pin (four positive voltage, four ground), external power 
input 

 

Figure 28.   DC to DC Converter, DC-123SR, Top Down View 

 
Figure 29.   DC-123 Drawing From [33] 
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Passive components such as resistors, capacitors, and inductors maintain 

their electrical characteristics over relatively wide operating temperature 

ranges [36].  Although nylon, which makes up all of the white connectors in 

Figures 26 and 28, has a wide operating temperature range as well, it is also 

known to have a high outgassing rate in a vacuum relative to many other 

materials [37].  Additionally, certain types of electrolytic capacitors, the type used 

on the DC to DC converter board, are an outgassing risk in a vacuum.  

Outgassing is a critical issue for the electro-optical imaging payload of 

TINYSCOPE since any outgassed particles could render the optics useless. 

Active components, such as integrated circuits, may be designed with 

various operating temperature ranges depending on manufacturer designs and 

processes.  Since data for individual components was not supplied by Ocean 

Server for the IBPS, Table 10 was complied by close inspection of the BB-04 and 

DC-123 boards.  Only components deemed critical from a temperature 

standpoint are included.  Four categories of components are identified in yellow 

highlighting to identify them as potential limiting cases from a thermal standpoint. 

In light of the potential mission limiting challenges raised above, several 

possible mitigating actions were identified and implemented on the test articles. 

These actions, along with several tests, are discussed in detail in the subsequent 

sections of this chapter.   
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Type / Component / Description
Board 

Nomenclature
Primary Case 
Marking

Add'l 
Marking Mfg Part # Manufacturer

Oper. 
Low 
Temp

Oper. 
High 
Temp Qty URL

Switching Regulator E1, E3 LT832 1625 LTC1625 Linear Technologies 0* 70* 2 http://cds.linear.com/docs/Datasheet/1625f.pdf
Switching Regulator E10 LT819 3728LE LTC3728LE Linear Technologies ‐40 85 1 http://cds.linear.com/docs/Datasheet/3728lxfd.pdf
Single N‐Channel, Logic Level, PowerTrench® 
MOSFET Q2, Q4, Q5, Q6 FAG3AP FDS 6680A FDS 6680A Fairchild ‐55 150 4 http://www.fairchildsemi.com/ds/FD%2FFDS6680A.pdf
N‐Channel Reduced Qg, Fast Switching 
MOSFET Q1, Q3 7860 AH T64B Si7860DP Vishay/Siliconix ‐55 150 2 http://www.vishay.com/docs/71854/71854.pdf
N‐Channel 30‐V (D‐S) MOSFET Q30, Q32 7856A AP T64B Si7856ADP Vishay/Siliconix ‐55 150 2 http://www.vishay.com/docs/73157/73157.pdf
Schottky Rectifier D2, D3, D5 FA506 B34 MBRS340 Fairchild ‐65 125 3 http://www.fairchildsemi.com/ds/MB/MBRS340.pdf

* Same chip as 1625I but not tested to ‐40 ‐ 85
     Total 14

Type / Component / Description
Board 

Nomenclature
Primary Case 
Marking

Add'l 
Marking Mfg Part # Manufacturer

Oper. 
Low 
Temp

Oper. 
High 
Temp Qty URL

Microchip PIC E7 PIC18F458 ‐I/PT PIC18F458‐I/PT Microchip ‐40 85 1 http://ww1.microchip.com/downloads/en/DeviceDoc/41159d.pdf

Dual Smart Battery System Mgr E3, E4 LTC1760CFW LTC1760CWF Linear Technologies 0** 70** 2
http://www.linear.com/pc/downloadDocument.do?navId=H0,C1,C100
3,C1037,C1078,C1089,P2325,D1958

Dual 30V P‐Channel PowerTrench MOSFET

Q18, Q19, Q20, 
Q21, Q22, Q23, 
Q30, Q31 PJ7AF FDS 4935A FDS4935A Fairchild ‐55 175 8 http://www.fairchildsemi.com/ds/FD/FDS4935A.pdf

N‐Channel PowerTrench MOSFET
Q4, Q5, Q6, 
Q7, Q8, Q9 PJ9CS FDS 8984 FDS8984 Fairchild ‐55 150 6 http://www.fairchildsemi.com/ds/FD/FDS8984.pdf

Dual 1‐Of‐4 FET Mux/Demux with ‐2 V 
Undershoot‐Protection E2 CU253C 76KG4 J6C3 Texas Instruments ‐40 85 1 http://focus.ti.com/docs/prod/folders/print/sn74cbt3253c.html
Micropower low dropout regulators with 
shutdown E9 LT80603 11295 LT1129 Linear Technologies 0 125 1 http://cds.linear.com/docs/Datasheet/112935ff.pdf
RS‐232‐Compatible Transceivers E8 3313 CUB MAX3313 Maxim 0* 70* 1 http://datasheets.maxim‐ic.com/en/ds/MAX3311‐MAX3313.pdf

* Same chip as EUB but not tested to ‐40 ‐ 85

     Total 20
** Spec sheet states that the chip is expected to work from ‐40 to 85 
but isn't tested to these extremes

D123SR

BB‐04SR

 

Table 10.   IBPS Component Operating Temperature Limits 
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C. SOLAR PANEL COMPATIBILITY TEST 

To be used for TINYSCOPE’s EPS, the IBPS must be easily configured 

for use with a solar panel.  An Ocean Server technical note supplies guidance for 

implementing a solar panel with the BB-04 [38].  The application note was 

followed and battery charge/discharge data was collected.  The system 

performed as expected.  A PowerFilm Solar Model R15–300 Rollable Solar 

Charger with the following specifications was used [39].k 

Specification Value 

Rated Power (Pmax) 5 W 

Operating Voltage (Vmp) 15.4 V 

Operating Current (Imp) 0.3 A 

Dimensions 292 mm x 531 mm 

Weight 0.6 LBS 

Table 11.   Test Solar Panel Specifications 

The load used during the test was a Microhard Systems, Inc. industrial 

wireless modem model number, MHX-2420.  As a 2.4 GHz radio, it is 

representative of TINYSCOPE’s communications subsystem.  Although the 

current required is not specified, its rated voltage input is 9 V to 30 V [40].  The 

12 V supply from DC-J20 was used to power the MHX-2420. 

Figure 30 shows the overall field test setup while Figure 31 shows details 

of the power controller and load.  The IBPS is on the left of Figure 31 while the 

load is mounted on the right. 

Ocean Server provides software called FULLBATS that allows data 

logging of battery current, voltage, temperature, capacity, and a system status 

                                            
k These specifications are given for an air mass value of 1.5. 
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code.  This data is graphed in Figure 32 for the single battery that was attached 

to the BB-04 during the test period. 

 

Figure 30.   Solar Panel Test Setup 

 

Figure 31.   Detail View of Solar Panel Test Setup, IBPS on Left 
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Figure 32.   Battery Current During Solar Panel Test 

Although the solar panel’s operating voltage is 15.4 V, almost 18 V was 

seen during the test.  This value is not recorded by FULLBATS and had to be 

measured directly with a multi-meter.  The following test profile description 

follows the current levels from left to right in Figure 32.  With the load off and only 

one battery connected to the BB-04/DC-123 system, the system drew about 

30 mA from the battery.  This is termed the quiescent power required by the 

BB/DC system.  At about 09:18:25, the solar panel was plugged in.  The BB uses 

externally supplied power to first supply the load with any remaining power going 

towards charging the battery [38].  Since there was no load other than the 30 mA 

quiescent power, most of the power collected by the solar panel went towards 

charging the battery.  At 09:23:45, the MHX-2420 was turned on without putting it 

in a transmit or receive configuration.  The data points near -0.14 A is with the 

MHX-2420 on and the solar panel plugged in.  The data drops to -0.23 A due to 

the solar panel being unplugged during that time.  At approximately 09:25:27, the 

MHX-2420 was turned off and the system returned to its initial state.  At 

09:26:00, the solar panel was again plugged in.  Power collection increased to 
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about the levels seen from 09:18:29 to 09:23:45.  It should be noted that 

although the panel is rated for 300 mA, a maximum of about 100 mA was 

recorded during the test.  This is due variations in air mass the sunlight travels 

through, the temperature of the solar cells, and the incidence angle of sunlight on 

the solar panel.  The air mass of the location of test is approximately 2.1 while 

the temperature and incidence angle are definitively known. 

It bears repeating here that the IBPS is not a peak power tracking system.  

Ocean Server documentation states that the voltage from the solar panel must 

be in the 17.2 V to 24.2 V range [38].  However, during testing in the Small 

Satellite Laboratory voltages as low as 16 V were successful in powering the BB-

04 and DC-123.  Once the voltage of the external power supply was raised 

sufficiently above the battery voltage, the battery also began charging (this was 

16.3V during this particular test).  Although there are many different strategies to 

avoid overcharge in a direct energy transfer system, it is believed that the IBPS 

opens the incoming current circuit once the load and battery charge currents 

have been satisfied.  Additional testing is needed to verify this, however. 

During the solar panel test, the system behaved precisely as documented 

and expected.  These results suggest that the BB-04 and DC-123 can 

successfully be used with a solar panel for TINYSCOPE’s EPS.  However, the 

design must take into account the direct energy transfer approach of the IBPS.  

This was accounted for in Chapter II, Section D6 by ensuring there are ample 

solar cells in series to provide adequate voltage.l 

D. BATTERY COMPATIBILITY TEST 

As mentioned in Chapter II, Section F, the standard OEM batteries have 

mass and volume levels that are too high to be practical for TINYSCOPE’s EPS.  

Because of this, two alternative batteries were investigated and tested with the 

BB-04 and DC-123 IBPS.  These alternatives were chosen because their 

                                            
l This method is tantamount to a “brute force” approach.  Essentially, more than enough solar 

cells are provided for in series and parallel to account for inefficient collection. 
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nominal voltage is identical to the OEM battery, i.e. 14.4 V, and they adhere to 

the Smart Battery Standard specification.  It was believed that these features 

would increase the likelihood that the batteries would work correctly with the 

IBPS.  Similar to the OEM battery, both alternatives are manufactured by 

Inspired Energy.  Table 12 summarizes the pertinent specifications of the 

standard OEM battery and the two alternatives considered.  Figure 33 shows a 

picture of the batteries in Table 12. 

Model # 
Series 

Cells 

Parallel 

Strings 

Total 

Cells

Nominal 

Voltage (V) 

Capacity 

(Ah) 

Length 

(mm) 

Width 

(mm) 

Height 

(mm) 

NL2044HD22 4 3 12 14.4 6.6 285 58.9 22.3 

NH2054HD26 4 2 8 14.4 5.2 152.4 78.7 22.9 

ND2054HD26 4 1 4 14.4 2.6 86.4 78.7 22.9 

Table 12.   Battery Data Comparison 

 

Figure 33.   Graphical Battery Comparison 

To ensure realistic results, the batteries were tested under load and 

charging conditions.  The baseline functional test procedure is detailed in 

Section E, below.  A load bank using representative TINYSCOPE loads for each 
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voltage was implemented using variable resistors and a DB-15 connector to 

interface with DC, J20.  The resistance values were derived using the load detail 

in Appendix B and are close to TINYSCOPE’s average values during payload 

operations.  Although TINYSCOPE has no -12 V loads, it was decided to include 

a load for this value during the testing for completeness.  Approximately half of 

the resistance value for the +12 V load was applied to the +12 V load while the 

other half was applied to the -12 V load.  A picture of the load bank is shown in 

Figure 34, below.  Moving from back to front in Figure 34, the resistances of the 

loads are as follows:  the -12 V load is 21.04 Ω, the 5 V load is 7.204 Ω, the 12 V 

load is 33.78 Ω, and the 3.3 V load is 11.61 Ω. 

 

Figure 34.   Representative Load Bank 

The battery alternatives do not come equipped with the standard 6-pin 

Molex Mini-fit Jr. connector as the OEM batteries do.  Thus, they cannot be 

immediately interfaced with the BB-04 (at connectors J22, J17, J21, and J12).  

The custom battery connector shown in Figure 35 was built using parts sold by 

Inspired Energy.m 

                                            
m The 5-pin black connector is a right angle battery mating connector, left-hand key.  Inspired 

Energy model # 610018, AMP model # 5787428-1. The green PCB is heavy-duty circuit board for 
standard battery connectors (1.6 mm thick).  Inspired Energy model # BL237A.  
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Figure 35.   Custom Battery Harness 

An external DC power supply with a 20 V and 2 A limit was input to BB-04, 

J5 and J7.  The load bank was hooked up to DC-123, J20.  A set of four each of 

the 5.2 Ah and 2.6 Ah batteries were connected, in turn, to BB-04 J22, J17, J21, 

and J12.  Figure 36 shows a top-level setup. 

 

Figure 36.   Battery Compatibility Test, Top-Level Setup 
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The following test description is easiest to understand while referring to 

the graphs in Figure 37.  For about the first 550 seconds, the batteries were 

plugged in with no load and no external power supply.  This means the batteries 

supported only the quiescent loads of the IBPS.  Just before 300 seconds into 

the test, all loads were turned on simultaneously (via pins two and four of J1 on 

BB-04).  Panels C and D of Figure 37 show the loads activating while panels E 

and F show the batteries being used.  From 300 seconds to about 550 seconds, 

the loads were left on to ensure the batteries could support the loads.  From 

about 550 seconds to about 850 seconds the external power supply was allowed 

to supply up to 2 A of current.  This was done to ensure the IBPS could charge 

the non-OEM batteries.  Panels A and B show the increase in power supply 

voltage and current.  Since the loads were still being supported, panels C and D 

remain unchanged.  However, battery voltages begin to increase (panel E) and 

battery current becomes positive (panel F).  Positive current values imply 

charging whereas negative values imply discharging, i.e. outgoing current.  

Because there is only about 1 A going to charge the batteries and this is divided 

among four batteries, panel G does not show much of a change in percent 

increase until just before the test ends.  The results of the test for ND2054HD26 

“small battery” are shown in Figure 38. 

Both sets of batteries were successfully controlled by the BB-04, DC-123 

IBPS.  The batteries supported the quiescent loads of the IBPS, representative 

on-orbit loads, and were also able to be charged by the IBPS.  The positive 

results shown in Figures 37 and 38 give high confidence that the IBPS can be 

operated with either of the smaller mass, lower capacity batteries that were 

tested.  It should be noted that any alternative batteries must have a nominal 

voltage of 14.4 V and must be Smart Battery Standard specification compliant.  

The Linear Technologies Dual Smart Battery System Manger IC’s (reference 

Table 10) must interface to batteries that have this capability.  Non-compliance 

with this requirement could lead to over or under charging of the lithium ion cells 

resulting in damage or injury. 
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Figure 37.   Battery Compatibility Test, NH2054HD26 “Medium Battery” 
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Figure 38.   Battery Compatibility Test, ND2054HD26 “Small Battery” 
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E. IBPS EFFICIENCIES 

To more accurately predict the amount of power that must be collected by 

the solar panels to support the loads and battery charging, system efficiencies 

must be identified, measured and accounted for (especially for use in the EPS 

simulations of Chapter III).  The IBPS equivalent circuit was thoroughly 

developed in Chapter II, Section A and Appendix A.  The present section 

documents how the measurements were taken and the process used to calculate 

the following efficiencies: 

• sη - Line efficiency from the solar panel to the power controller. 

• cη - Charge efficiency of the batteries. 

• dη - Discharge efficiency of the batteries. 

• 1η - Efficiency of the power controller during charging 

• 2η - Efficiency of the power controller during discharging 

• pη - Nominal efficiency of the power controller 

• 3η - DC to DC converter efficiency for the 3.3 V load. 

• 4η - DC to DC converter efficiency for the 5 V load. 

• 5η - DC to DC converter efficiency for the 12 V load. 

• 6η - DC to DC converter efficiency for the -12 V load. 

• Lineη - Line efficiency from the output of each of the DC to DC 
converter load voltages to the physical load. 

Both the solar array to power controller efficiency sη  and the load line 

efficiency Lineη  are based on resistance values in power transmission lines.  

These values cannot be known at this phase of TINYSCOPE’s EPS design since 

the physical configuration of the spacecraft is still evolving.  However, a 90% 

efficiency is considered conservative and is used for both parameters.  

Therefore, sη and Lineη  are set to 0.90. 

Although the manufacturer gave general case battery charge and 

discharge efficiencies, efficiency can vary widely based on how much current is 
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going into or out of the batteries and what the ambient temperature is.  The faster 

the batteries are charged or discharged, i.e. the higher the “C”, the less efficient 

they are.  Ambient temperatures beyond the battery’s optimum operating range 

can also cause efficiency to drop.  Because the design in Chapter II calls for very 

low “C” values, i.e. small charge and discharge currents, no adjustment was 

made for this variable.  As discussed previously, thermal modeling suggests the 

average internal temperature of the satellite will vary from about -20 °C to 20 °C.  

The batteries are rated for discharge from -10 °C to 50 °C and charge from 0 °C 

to 45 °C.  During discussions with manufacturer technical personnel, it was 

confirmed that the charge and discharge efficiencies of the batteries can be 

safely assumed to be 95%.  Thus cη  and dη  will be assumed to be 0.95. 

The remaining efficiencies were measured in representative system 

configurations as power out of a given component divided by power in to that 

same component.  All power values were calculated as the product of a 

measured voltage and a measured current.  Figure 5 is repeated below, as 

Figure 39, for convenience with the addition of numbered locations on the 

equivalent circuit showing measurement points.  All measurements are contained 

in Appendix H. 

 

Figure 39.   TINYSCOPE EPS Equivalent Circuit With Efficiency Measurements 
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The basic setup of the system was one NH2054HD26 “Medium Battery” 

and an external power supply connected to the base board.  The battery was not 

connected during discharge only measurements to isolate the load voltage and 

current measurements.  The DC to DC converter was connected to the base 

board and the load was connected to the DC to DC converter.  The load 

measurements were made with only one load attached at a time to isolate the 

DC to DC converter’s efficiency for each voltage that it supplies.  The power 

controller efficiency was measured during discharge for all loads connected and 

then each load connected individually.  The power controller efficiency was also 

measured during charge when no loads were connected and then with all loads 

and a battery connected.  A summary of the findings is given in Table 13, below. 

 

Name Efficiency Measured As 

2 pη η  0.95 Point 3 / Point 2 (NOTE: No battery attached during 

measurement.)  This is the discharge efficiency of 

the power controller.  Each individual efficiency is 

assumed to be the square root of 0.95. 

1η  0.89 Point 2 / Point 1 and (Point 2 + Point 3) / (Point 1).  

This is the power controller efficiency in charge. 

3η  0.75 Point 4 / Point 3 

4η  0.88 Point 5 / Point 3 

5η  0.93 Point 6 / Point 3 

6η  0.73 Not Shown.  This is the efficiency of the DC to DC 

converter for the -12 V load. 

Table 13.   EPS Efficiencies 

It should be noted that the values obtained for efficiencies are reasonable 

approximations at best.  This is because circuit efficiencies vary based on 
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dynamic conditions like load impedance, temperature, etc.  This is clearly 

evidenced by the differing values for power controller charge and discharge 

efficiencies.  Despite these limitations, the values obtained are adequate first 

order approximations.  Inspection of Figures 16 and 22 in Chapter III show that 

the efficiency values in the EPS model are taken from Table 13.  If significant 

changes are made in TINYSCOPE’s loads, it is recommended that efficiency 

testing be re-accomplished with the values input back into dynamic simulation of 

Chapter III. 

F. BASELINE FUNCTIONAL TEST AND CONTROL SOFTWARE 
DESCRIPTION 

1. Overview 

Because IBPS operation is undocumented for vibration and extreme 

thermal-vacuum environments, a baseline functionality test was developed to 

monitor and document any changes in operational capability from one test to 

another.  Although the test was not exhaustive, most of the important features of 

the IBPS were monitored.  Below, Figure 40 shows a graphical overview of the 

test setup. 

The blue shaded boxes are associated with the normal operation of the 

IBPS and the black shaded boxes are related to test data monitoring and control.  

The arrows represent the direction of travel of either power or data.  The DC to 

DC converter is connected to the base board for power and data.  Four batteries 

of one capacity size are connected to the base board and the load bank of 

Figure 34 is connected to the DC to DC converter.  A base board connection to a 

control computer is part of the standard operation of the IBPS.  Data is passed 

from the base board to the computer while commands may also be sent from the 

computer to the base board.  A power supply limited to 20 V and 2 A is 

connected to the base board to provide power and battery charging when 

required.  Two connections are required to be able to charge all four batteries 
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simultaneously.  A normally open pushbutton switch is connected to the base 

board to control power to the loads through the DC to DC converter. 

 

Figure 40.   Baseline Functional Test Overview Diagram 

The remaining items depicted in Figure 40 are not needed for the normal 

operation of the IBPS.  Four programmable multimeters are used to sense the 

voltage at the loads.  This data is collected and graphed by custom designed 

control software written by Mr. Jim Horning of NPS’ Space Systems Academic 

Group Small Satellite Laboratory.  The software also plots power supply, battery 

voltage, and battery current levels as well as setting the output of the power 

supply.  A handheld multimeter and a bench top oscilloscope are used to 

periodically record battery voltage and current levels independently of the IBPS.  

A Hall Effect sensor on the oscilloscope is used for the current measurement.  

Finally, up to four thermocouples are positioned on the IBPS or the thermal-

vacuum chamber and connected to a data logging thermometer.  This data is 

sent to data logging software also residing on the control computer.  A full listing 
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of software and hardware required for baseline functional testing is listed in 

Appendix I.  A picture showing the actual setup of Figure 40 is shown in 

Figure 41. 

 

Figure 41.   Baseline Functional Test Physical Setup 

2. Procedure and Timeline 

A standard procedure was followed during each baseline functional test 

for ease of comparison with subsequent tests.  In this way, one can see at a 

glance if the IBPS operation was consistent from one test to another.  The 

procedure was as follows: 

• With batteries connected and the power supply and load 
disconnected, the IBPS was run for approximately five minutes.  At 
the end of five minutes, independent battery and voltage 
measurements were taken at the batteries. 
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• The loads were then turned on for approximately five minutes after 
which time independent battery measurements were taken and 
recorded again. 

• Finally, the power supply was turned on for five minutes with 
another set of battery measurements taken again. 

This timeline is depicted in Figure 42 that shows a screen shot of the 

“OS_Tester1.py” control software. 

 

Figure 42.   OS_Tester1.py Control Software Screen Shot 

Among the IBPS reported data, the control software monitors battery 

voltage, battery current, battery temperature, and battery charge percentage.  

The software additionally monitors the voltage and current of the power supply 

and the voltage of the loads.  While load current is also graphed, it is not 

monitored directly—it is calculated from the application of Ohm’s Law since the 

voltage is measured and the resistance is set by the test conductor.  In addition 
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to monitoring the above data, the control software also allows the operator to 

select whether or not the power supply is active. 

When the test begins, the batteries are connected with no load and no 

power supply.  Therefore, the power supply plot should be zero for voltage and 

current.  Charge percentages should reflect values close to what was recorded at 

the end of the last test.  The battery temperatures should be room temperature, 

i.e. about 20 °C.  All currents as well as all load voltages should be at zero.  

Battery voltages will not actually be zero but very close to it.n  Battery voltages 

should be about 14.4 V but can be anywhere between 11 V to 16 V. 

At five minutes into the test, the loads turning on cause an immediate 

change in the load voltage and load current plots.  The load voltages measured 

by the multimeters move to their appropriate level (as defined by which pin on 

DC-123, J20 they are connected to).  Since the load currents are calculated from 

the load voltages, these lines should move to their respective values as well.  For 

the given load bank, battery currents should sum to approximately -1 A.  For four 

batteries, this is -250 mA each.  The negative sign represents current leaving the 

batteries.  As time progresses with the loads on, there should be a slight 

downward trend in charge percentage and battery voltage.  There may a 

corresponding slight increase in battery temperature as the inefficiency of 

converting chemical energy to electrical energy introduces heat.  

At the ten-minute point, the power supply is turned on with an immediate 

change in the power supply voltage and current plot.  The power supply voltage 

increases to 20 V while the power supply current increases to 2 A.  Another 

immediate change occurs in the battery current plot.  Because the base board 

first uses the external power supply to source the load, the battery current stops 

being negative.  Approximately 1 A of the external power supply’s current is used 

to source the load with the remaining 1 A used to charge the batteries.  After 

several minutes with the external power supply activated, there should be a slight 
                                            

n Recall that the quiescent power of the BB-04/DC-123 IBPS is about 20 to 30 mA.  Although 
the 5 to 7 mA per battery is not discernable on the plot, it is recorded in the database.  
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upward trend in the battery charge percentages as well as the battery voltages.  

Battery temperature may be observed to continue to slightly increase as the 

batteries are charged. 

3. Proper Operation 

Proper operation of the IBPS can be distinguished by several facts.  First, 

the trend of the plots should be smooth.  If the plots are discontinuous or data 

points begin dropping out, there may be a problem with the IBPS.  Secondly, if 

the plots do not follow the timeline discussed above this could also indicate a 

problem.  One indication may be that when the loads are turned on at the five-

minute point the voltage and/or current plots do not change.  Another example of 

a possible problem would be at the ten minute point where the external power 

supply is turned on.  The batteries should immediately begin charging causing 

their current plots to go positive.  A final way to discover a problem is by 

comparing the independent battery voltage and battery current measurements of 

the IBPS and the handheld multimeter/benchtop oscilloscope.  Further 

investigation would be needed if these values differ more than about 10%. 

The baseline functional test was used during battery compatibility testing; 

before and after vibration testing; and before, during, and after thermal-vacuum 

testing.  One can observe the similarity of the battery compatibility plots in 

Figures 37 and 38 with baseline functional test in Figure 42.  The only difference 

between the plots is in the presentation of the data.  In Figures 37 and 38 the 

data reported by the IBPS is in the right column of plots while the data reported 

by the power supply and multimeters is shown in the left column of plots.  The 

specifics of how the baseline functional test was used is further elaborated below 

for vibration and thermal-vacuum testing. 
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G. ENVIRONMENTAL TESTING 

1. Overview 

Environmental testing for space missions is a function of many variables.  

Numerous test standards exist to which individual programs apply a custom set 

of specialized criteria.  Some of the criteria are strictly adhered to such as those 

required by launch providers to minimize the risk of catastrophic launch failure.  

Other criteria are less stringent and may be tailored based on the level of risk the 

program is willing to accept.  Despite these variations, a broad model of a 

qualification program is outlined in section 12.4 of [15].  Figure 43 summarizes 

the qualification testing flow. 

 

Figure 43.   Flow of Qualification Testing for Components After [15] 

The above testing flow applies to all “flight-type” hardware and software to 

ensure that the spacecraft will operate as intended [15].  The tests are arranged 

in the general order in which the satellite will see the respective environments.  

The functional test checks proper operation of the component before and after 

each environmental test.  Vibration testing assesses if the component can 

withstand the vibration loads produced during launch vehicle takeoff and ascent.  

Shock testing simulates explosive release of launch vehicle components such as 

the payload fairing and solid rocket boosters.  A thermal vacuum chamber tests 

spacecraft components in the pressure and thermal environment they will see in 

orbit.  Electromagnetic compatibility (EMC) and flash x-ray testing are typically 

only used when a component or satellite must be able to withstand the effects of 
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nuclear weapons in space.  Because this does not apply to TINYSCOPE, the last 

two tests will not be discussed further.  Shock testing was also not investigated 

due to time constraints and the lack of test equipment availability. 

Vibration and shock testing are typically highly dependent upon the launch 

vehicle that will deliver the satellite into orbit while thermal vacuum testing is 

dependent upon factors like the orbit of the satellite, the components used, and 

the overall physical configuration.  Thus, a program has more freedom to tailor 

thermal vacuum requirements than vibration and shock requirements.  An 

additional challenge is the fact that it is very difficult to test a satellite or 

component to appropriate vibration or shock levels before the launch vehicle is 

known (as is the current situation with TINYSCOPE).  One approach to this issue 

is to test to very high levels to ensure that the component or satellite may be 

launched on any launch vehicle.  This method must be balanced with program 

cost, schedule, and the level of risk accepted. 

To establish appropriate levels of testing for the IBPS, one must look 

beyond the basic outline in [15].  Two much more detailed standards commonly 

used in establishing the types and levels of testing required are the General 

Environmental Verification Standard (GEVS) [41] and the Test Requirements for 

Launch, Upper-Stage, and Space Vehicles Report (TR 06–11) [42].  GEVS is 

produced by the National Aeronautics and Space Administration’s Goddard 

Space Flight Center while TR 06–11 is written by The Aerospace Corporation 

under the auspices of the United States Air Force’s Space and Missile Systems 

Center.  The two references cover much of the information but from two different 

perspectives—GEVS is from a civil space standpoint while TR 06–11 is from a 

National Security Space point of view.  Although TINYSCOPE does not fall neatly 

into either category, the two documents were used to create a tailored set of test 

levels in the context of the test flow of Figure 43. 

Two definitions that are critical to determining which tests should be 

conducted and to what levels are the level of assembly and the test category.  

Test category generally falls into “development,” “qualification,” or “acceptance.”  
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Development testing, as defined in [42], is used to:  “a. Validate new design 

concepts or the application of proven concepts and techniques to a new 

configuration.  b. Assist in the evolution of designs from the conceptual phase to 

the operational phase.  c. Validate design changes.  d. Reduce the risk involved 

in committing designs to the fabrication of qualification and flight hardware.  

e. Develop and validate qualification and acceptance test procedures.  

f. Investigate problems or concerns that arise after successful qualification.”  

Qualification testing is “conducted to demonstrate that the design, manufacturing 

process, and acceptance program produce hardware/software that meet 

specification requirements with adequate margin to accommodate multiple 

rework and test cycles” [42].  Finally, acceptance testing is conducted “to 

demonstrate the acceptability of each deliverable item to meet performance 

specification and demonstrate error-free workmanship in manufacturing.  

Acceptance testing is intended to stress screen items to precipitate incipient 

failures due to latent defects in parts, processes, materials, and workmanship.”  

Essentially, development testing is used early on in the development while 

qualification testing is used to validate a given design to ensure it can operate in 

its intended environment.  Finally, once a design is settled on, acceptance testing 

tests to lower levels than qualification (to save time and money) but still high 

enough levels to screen out items that may have poor workmanship. 

A strong case can be made for testing the IBPS to qualification levels to 

verify that the design will operate correctly.  However, the test categories usually 

apply to components and systems that were designed from the beginning for use 

in space.  Because that is not the case for the IBPS, an argument can be made 

that an iterative approach should be used to discover at what level the 

component will fail.  For this reason, the test category definitions were not 

applied strictly to the IBPS testing.  Where practical, qualification levels were 

used. 
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Level of assembly refers to the parts under test and can be defined at 

many levels.  The most pertinent levels of assembly for this discussion are 

quoted from [41]: 

• Component – A functional subdivision of a subsystem and 
generally a self-contained combination of items performing a 
function necessary for the subsystem's operation.  Examples are 
electronic box, transmitter, gyro package, actuator, motor, battery. 
[The terms "component" and "unit" are often used interchangeably.] 

• Assembly – A functional subdivision of a component consisting of 
parts or subassemblies that perform functions necessary for the 
operation of the component as a whole.  Examples are a power 
amplifier and gyroscope. 

• Subsystem - A functional subdivision of a payload consisting of two 
or more components.  Examples are structural, attitude control, 
electrical power, and communication subsystems.  Also included as 
subsystems of the payload are the science instruments or 
experiments. 

• Payload - An integrated assemblage of modules, subsystems, etc., 
designed to perform a specified mission in space.  For the 
purposes of this document, "payload" and "spacecraft" are used 
interchangeably.  Other terms used to designate this level of 
assembly are Laboratory, Observatory, Satellite and System 
Segment. 

Given that the IBPS represents a significant portion of the EPS, the most 

appropriate level of assembly definition for the IBPS is “subsystem”.  The exact 

levels to which the IBPS was tested is discussed further in the following sections. 

2. Vibration Testing 

Qualification levels for subsystems are given in TR 06–11 as the same 

levels for payloads.  These are defined as 6 dB above acceptance levels at three 

minutes per axis.  Acceptance levels are depicted in Figure 44. 
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Figure 44.   Minimum Random Vibration Spectrum, Vehicle Acceptance Tests From 
[42] 

The GEVS states in section 2.4.2.4 that subsystem vibroacoustic tests are 

recommended when “the subsystem is expected to be significantly excited by 

structureborne [sic] random vibration.”  It goes on to state that “specific test levels 

are determined on a case by case basis.”  However, GEVS also specifies 

component minimum test levels as follows: 
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Figure 45.   Component Minimum Workmanship Random Vibration Test Levels From 
[41] 

By the following equation [43], qualification levels defined in TR 06–11 

offset the graph in Figure 44 to be four times higher than shown. 
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This essentially brings the TR 06–11 levels up to the levels defined in GEVS for 

minimum workmanship.  Although GEVS begins to fall off at a lower frequency, 

i.e. 500 Hz, the slope is not as steep as that of TR 06–11.  The levels in 

Figure 45 were used for the IBPS. 

Figures 46 and 47 show the IBPS on the vibration test stand.  Two custom 

harnesses are visibly secured to static test mounts in the 11 o’clock position.  

The data collected during the test is in Appendix J.  The vertical axis, defined as 

in and out of the page in Figure 46, was the only axis tested.  The main 

justification for this was to balance the risk of breaking the IBPS at high or 

extended vibration levels before being able to test it in the thermal-vacuum 

chamber.  Although time constraints precluded completion, the original intent was 

to perform a second vibe test on all three axes after thermal-vacuum testing. 

 

Figure 46.   IBPS on Vibration Test Stand, Top Down View 
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Figure 47.   IBPS on Vibration Test Stand, Side View 

In addition to the baseline functional test, a visual inspection of the IBPS 

was conducted before and after vibration testing.  No cracks, nicks, scratches, 

breaks, etc. were found in any of the solder joints or circuit boards.  Figure 48 

illustrates the results of the functional test of the IBPS after the vibration test 

(data collected on 23 Oct 09). 

The plots in Figure 48 follow closely the functional test timeline detailed in 

Section E2, above.  Additionally, all the plots meet the necessary conditions 

outlined in Section E3 to conclude that the IBPS operated as expected after the 

vibration test.  Thus, the IBPS is sufficiently designed to survive a representative 

launch environment. 
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Figure 48.   Post Vibration Functional Test, 23 October 2009
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3. Thermal-Vacuum Testing 

Thermal-vacuum qualification criteria for subsystems is given in TR 06–

11.  Section 7.3.7 of [42] implies that all equipment that can be tested at the unit 

level should be even if the equipment is classified at the higher subsystem level.  

The unit level criteria, shown in Figure 49, are much more stringent than the 

subsystem level criteria.  Subsystem levels are defined as the same as the 

system or payload levels. 

 

Figure 49.   Unit Test Temperature Ranges and Margins From [42] 

The temperatures listed in Figure 49 are required to be repeated a particular 

number of times.  The minimum number of cycles for electronic equipment is 

prescribed as four cycles for all testing categories, e.g. qualification and 

acceptance. 

As can be seen on the left side of Figure 49, all thermal vacuum testing is 

indexed to minimum and maximum model temperature predictions.  These are 

defined as, “the hottest and coldest temperatures predicted from thermal models 
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using applicable effects of worst-case combinations of equipment operation, 

internal heating, vehicle orientation, solar radiation, eclipse conditions, ascent 

heating, descent heating, and degradation of thermal surfaces during the service 

life [42].”  The minimum and maximum predicted temperatures (MPT) are then 

found by adding an uncertainty margin to the minimum and maximum model 

temperatures.  The MPT is defined as, “The highest and lowest temperatures 

that an item can experience during its service life, including all test and 

operational modes [42].”  One can see the minimum and maximum model 

predictions on the left of Figure 49 while the MPTs are shown on the right.  

Subsystem and payload level criteria are shown in Figure 50. 

 

Figure 50.   Payload Test Temperature Ranges From [42] 

All levels of testing require a pressure no higher than 10-4 Torr or the 

pressure at the service altitude, whichever is lower.  Because the IBPS has not 

been previously tested at the unit level, a strict interpretation of TR 06–11 would 

require the application of the requirements in Figure 49.  This would mean four 

temperature cycles between -34 °C and 71 °C. 

NASA’s GEVS temperature criteria for all levels of assembly are shown in 

Figure 51.  A pressure of no more than 10-5 Torr is required.  The main difference 

in requirements between the levels of assembly in GEVS is the number of 

thermal cycles.  The subsystem level is required to successfully complete four 

hot/cold cycles. 

Both the GEVS standard in Figure 51 and the TR 06–11 standard in 

Figure 49 are indexed to minimum and maximum expected temperatures.  

However, the margins required in GEVS are 5 °C and 10 °C for acceptance and 

qualification, respectively while the range expands to 11 °C and 21 °C for the 

same test categories in TR 06–11.  
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Figure 51.   Thermal-Vacuum Temperatures From [41] 

The thermal vacuum levels required of the IBPS from GEVS are +/- 10 °C 

from the minimum and maximum expected temperatures. 

Because both TR 06–11 and the GEVS are indexed to a set of predicted 

temperatures, a reasonable estimate for expected IBPS temperatures had to be 

obtained.  As a proxy for the IBPS temperature, the following three distinct 

models were used to approximate TINYSCOPE’s average internal temperature:  

a TINSYCOPE single node analysis developed from the material in Chapter 11 of 

[15], a Matlab/Simulink dynamic EPS and thermal control model developed from 

[16], and the NX modeling accomplished in Chapter V, Section B of [5].  The 

results of these models are presented without development. 

The Microsoft Excel based single node analysis treats the entire 

TINYSCOPE spacecraft as one lumped thermal node.  This model predicts a 

temperature range  from  -10.7 °C to 23.3 °C.  The Matlab/Simulink© model has 

52 nodes and is documented in [44].  The model is simplified in that it assumes 

body mounted solar panels and a continuously nadir pointing spacecraft but it 

allows for the temperature of the IBPS node to be read individually.  This model 
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predicts a temperature range of 2.9 °C to 14 °C for the IBPS.o  Lastly, the NX 

model shows an average satellite internal temperature of -20.6 °C to 24.4 °C.  

Notice that the single node model and the NX model give a composite for the 

average internal temperature of the entire spacecraft whereas the 

Matlab/Simulink© model gives the temperature for one compnonent, i.e. one 

node.  Given these estimates of the minimum and maximum model 

temperatures, a range for thermal-vacuum testing can now be selected. 

Recalling that the satellite program has a reasonable level of flexibility in 

choosing the required thermal-vacuum limits, the final levels chosen for the IBPS 

were -30 °C to 70 °C for four cycles.  These levels were primarily selected 

because they almost reach the more strict TR 06–11 (Figure 49) and 

encompassed the GEVS limits (Figure 51).  Additionally, the limits seemed 

reasonable given the temperature limits of the devices given in Table 10.  

Several of the components on the IBPS are rated from 0 °C to 70 °C.  Therefore, 

it was initially believed that the upper temperature limit would not force the IBPS 

out of expected operation but that the lower limit would be problematic. 

Appendix K lists the test procedures developed for and used during the 

conduct of two thermal vacuum tests.  Notes taken during the tests are contained 

in Appendix L.  Although originally one thermal-vacuum  test of four complete 

cycles was planned, this turned out to be impossible for two main reasons.  First, 

to create as similar an environment as possible for the IBPS in space, heat 

conduction was avoided—no heating or cooling plate was used in the TVAC 

chamber.  Figure 52 shows the IBPS situated on a test stand made of the 

material Delrin along with four long screws.  Delrin has a very low thermal 

conductivity ensuring no heat would be transferred from the walls of the thermal-

vacuum chamber to the IBPS through conduction.  Because only radiative 

heating was used, it took a very long time to achieve required temperatures.  The 

thermal profile in Figure 53 shows that it took more than 1.5 hours from the time 

                                            
o The average internal temperature of the satellite with this model is -8 °C to 12 °C. 
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the test started at 1006 to achieve 70 °C on the IBPS boards.  The test 

procedures then called for a one hour soak time.  The same issue occurred when 

attempting to achieve the low temperature, i.e. it took two hours to go from 67 °C 

to -12 °C on the base board.  Reaching the targeted -30 °C would have taken an 

extremely long time.  Additionally, the requirement for the one hour cold soak 

was not modified so that the test could be concluded.  At this point in the test, it 

was decided that a second thermal-vacuum test would be required that would 

focus exclusively on the cold environment.  The results of this second thermal-

vacuum test are reported after the present discussion of the first thermal-vacuum 

test. 

 

Figure 52.   IBPS in Thermal-Vacuum Chamber 
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Figure 53.   Temperature Profile, 28 October 2009 TVAC Test 

The second reason four cycles could not be achieved is because there 

was a malfunction on one of the IBPS boards that necessitated real-time 

troubleshooting to salvage the test.  At approximately 1314, when the base board 

was about 68 °C and the DC converter board was about 77 °C, batteries three 

and four attached to the base board were no longer being used by the IBPS.  

The control program, OS_Tester1.py, seemed to stop providing output and no 

longer responded to operator inputs.  All loads were still being supported but only 

through batteries one and two or the external power supply.  After the problem 

was more fully characterized, it was decided to continue testing with the 

remaining batteries.  Although a definitive reason for the malfunction has not 

been found, it is hypothesized that one or more of the chips on the IBPS stopped 

operating due to being so far outside of its normal operating temperature range. 

Figure 53 shows data collected by thermocouples that were placed on the 

IBPS (one each on the base board and the DC to DC converter) and the thermal-
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vacuum chamber walls (one each at top center and bottom left).  In addition to 

this plotted data, the thermal-vacuum chamber had a temperature reading on the 

front panel that is not automatically recorded by a computer.  Periodic readings 

were documented in the test notes of Appendix L. 

The functional testing during the first thermal-vacuum test is shown in 

Figure 54 on the following page.  The zero on the abscissa corresponds to 

approximately 1258 in Figure 53.  Therefore, the left side of Figure 54 depicts the 

functional test during the high temperature.  The long period from about 1,900 

seconds to about 9,000 seconds is the time it took to go from the high 

temperature of 70 °C to the low temperature of about -15 °C.  Again, there was 

no one-hour cold soak.  The right side of Figure 54 shows the functional test at 

the cold temperature from about 9,000 seconds to 10,000 seconds and then one 

final functional test after the thermal-vacuum chamber was returned to ambient 

temperature and pressure (from about 11,000 seconds to 12,000 seconds).  

These three areas are shown in exploded views in Figures 55 and 56. 

Upon close inspection of Figure 55, it can be observed that up until the 

time of the partial failure described above (approximately 850 seconds), the 

functional tests gave results that are consistent with proper IBPS operation 

(detailed in Sections E2 and E3, above).  For example, the batteries were at very 

low current (Panel F) and normal voltage (Panel E) while supporting the 

quiescent load of the IBPS (through almost 200 seconds).  Then, when the loads 

were activated at about 200 seconds, Panels C and D show the expected results 

e.g. the load voltages rise to their nominal levels of 3.3 V, 5 V, 12 V, and -12 V.  

The fault appears at approximately 850 seconds where OS_Tester1.py stops 

collecting data in all eight panels.  The remaining points collected from about 

1,600 to 2,000 seconds evidence the troubleshooting steps but also show that 

the remaining two batteries were able to support the loads without a problem.  

For example, at 1,700 seconds, Panels F and G show expected results when the 

load is activated (as shown in Panels C and D).  Panel H in Figures 54 to 56 has 

been zoomed in to exclude a momentary data dropout to 0 K at 3,515 seconds.
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Figure 54.   Functional Test Results, First Thermal-Vacuum Test 
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Figure 55.   Functional Test Results, First Thermal-Vacuum Test, 0 to 2,000 Seconds
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Although the cold soak objective was not achieved and the IBPS had 

already partially failed, the functional test results at the cold temperature are 

nonetheless presented for completeness in Figure 56 on the following page.  On 

the left side of the graph, at about 9,250 seconds, one can see that batteries one 

and two supported IBPS quiescent loads as expected (Panels C and D).  When 

the loads were turned on at about 9,400 seconds, the battery currents went 

negative (Panel F) and the load voltages (Panel C) and currents (Panel D) 

moved to their expected values.  Additionally, battery voltage (Panel E) and 

battery charge (Panel G) show the gentle negative slope during discharge and 

then moderate positive slope as the power supply was used to source the load 

and charge the batteries.  At 10,000 seconds, the batteries were disconnected 

from the IBPS and OS_Tester1.py was exited to return the thermal-vacuum 

chamber up to ambient pressure and temperature. 

Upon ambient conditions being achieved, the IBPS was again connected 

and a functional test run from about 10,600 to 12,000 seconds.  The results here 

are the same as before—all data is as expected.  Battery currents are low during 

quiescent loading and then increase as required to support the TINYSCOPE 

representative load.  One step in the final functional test that was erroneously left 

out was turning on the power supply to check the batteries for charge capability.  

Even though this was not done here, it was accomplished later on.  This data will 

be presented as part of the second thermal-vacuum test. 

Although the cold soak was not achieved, the final test was run after 

returning the board to ambient condition in just 10 minutes.  This gives a good 

indication that the IBPS is fairly robust. 
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Figure 56.   Functional Test Results, First Thermal-Vacuum Test, 9,500 to 12,000 Seconds
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The temperature profile for the second thermal-vacuum test is presented 

in Figure 57.  The IBPS was turned on after achieving a vacuum.  Three of the 

thermocouples appeared to malfunction, i.e. go to an overload condition, shortly 

after closing the chamber door.  However, one temperature data point, the DC to 

DC converter, was still successfully collected.p  Additionally, manually recorded 

temperatures from the thermal-vacuum front panel are notated in Appendix L.  

The temperature can be seen to plateau at about 13:30 and then begin to slowly 

rise.  At this point it was determined that the functional test should commence 

despite the fact that the target temperature of -30 °C and the associated cold 

soak was not attained. 
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Figure 57.   Temperature Profile, 17 November 2009 TVAC Test 

                                            
p One may notice that the temperature of the DC to DC converter was consistently warmer 

than that of the base board in Figure 51.  This makes sense given that the efficiency of the DC to 
DC converter is lower than the base board, i.e. more heat is produced by the DC to DC converter.  
Because of this, it can be inferred that the base board was cooler than what is shown in Figure 55 
for the DC to DC converter. 
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Since the same IBPS unit was used for both tests, only functional test data 

for batteries one and two could be collected.  A detailed view of the IBPS just 

before the second thermal-vacuum test began is shown in Figure 58 while the 

results of the functional test are presented in Figure 59.  The functional test was 

modified slightly to keep the IBPS on through the period when the thermal-

vacuum chamber was returning to ambient temperature and pressure.  With this 

modification in mind, the data are as exactly as expected.  Batteries one and two 

support quiescent loads from 0 to 12,500 seconds until the loads are initiated.  At 

that time the battery currents go negative and the load voltages and currents go 

to their expected values.  Although there are a couple of data dropouts in Panel 

E, Panel G shows data consistent with a long period of discharge followed by a 

shorter period of high rate charge.  Additionally, the battery temperatures rise 

throughout the test period.  In short, the IBPS performed flawlessly. 

 

Figure 58.   IBPS in Thermal-Vacuum Chamber, Second Test
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Figure 59.   Functional Test, Second Thermal Vacuum Test
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H. HARDWARE TESTING SUMMARY 

Building on the design and simulation work in Chapters II and III, 

Chapter IV endeavored to characterize the Ocean Server IBPS hardware.  The 

main questions that were explored were: 

• Can the IBPS operate from a solar array? 

• Can the IBPS operate using lower mass, and therefore lower 
capacity, batteries? 

• What are the efficiencies of the components? 

• Can the IBPS withstand the vibrations associated with a launch to 
low earth orbit? 

• Can the IBPS survive TINYSCOPE’s predicted thermal 
environment? 

• Can the IBPS survive operating in a vacuum? 
Although exhaustive inquiries could not be accomplished in all cases, the results 

clearly show that the IBPS is very robust.  Its functions were successfully 

exercised during solar panel testing, battery testing, efficiency testing, vibration 

testing, and thermal-vacuum testing. 

Solar panel testing showed that the IBPS can be supplied from a very low 

current level source.  The solar panel used supplied a maximum of 100 mA 

whereas TINYSCOPE will provide approximately 1.5 A (reference Table 8).  

More importantly, although the test solar panel was rated at only 15.4 V, it was 

still able to supply a voltage closer to 18 V.  This bodes well for the solar panel 

design which calls for 17.3 V (reference Table 8).   

Battery compatibility testing showed that the IBPS can operate off of 

smaller, lower capacity batteries.  This is critical to optimizing the volume and 

mass of TINYSCOPE’s EPS.  This is especially true considering the fact that the 

final list of subsystem components to be used on TINYSCOPE is yet to be 

determined.  It bears restating that the capacity of battery used will affect the 

expected number of cycles.  Additionally, the use of two smaller capacity 

batteries will provide some defense against IBPS malfunction as was discovered 

during thermal-vacuum testing. 
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Finding the efficiencies of the IBPS was critical to fully modeling the EPS 

design in Matlab/Simulink.  Without complete knowledge of how much power is 

available to the loads and for battery charging, it is impossible to correctly size 

the solar panels or battery capacity.  Thus, as TINYSCOPE’s design evolves, 

efficiency testing must be re-accomplished to ensure accurate efficiencies are 

used during dynamic EPS modeling. 

Although standards call for many different types of space vehicle testing, 

vibration and thermal-vacuum testing were considered to be of primary 

importance since they are somewhat representative of the types of testing.  The 

overall approach was initially to vibration test to a medium level in one axis and 

then thermal-vacuum the same unit to a reasonable level.  After that, the same 

unit would then go back through a more thorough vibration test in all three axes 

with another more rigorous thermal vacuum test.  Because of unforeseen 

hardware problems and unaccounted setup effort, only the first half of the 

approach was executed.  Despite this, much data was gathered and analyzed.  

Not only did these tests provide unexpected information regarding the use of 

multiple batteries, they also provided a reasonable basis of confidence for 

successfully using the IBPS in space. 

The purpose of the work documented in this chapter was to conduct a 

preliminary investigation into the feasibility of successfully using the IBPS in a 

low-cost, moderate-risk space mission.  This chapter provided a reasonable 

amount of data and analysis upon to base a sensible decision to pursue further 

the use of the Ocean Server IBPS within the context of the guiding principles of 

Project TINYSCOPE:  use of COTS, short mission life, and low cost. 
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V. RECOMMENDATIONS AND CONCLUSIONS 

Given the guiding principles of Project TINYSCOPE, a nanosatellite EPS 

was designed, simulated, and potential hardware was tested.  One of the most 

challenging parts of this thesis was to keep the EPS design up to date in the face 

of continuously changing power requirements.  The power requirements changed 

because of two main reasons.  First, the set of components required for a 

mission such as TINYSCOPE is not yet well characterizedq and no one on the 

present TINYSCOPE student-officer team has actual experience designing and 

building operational satellites.  This meant that a static set of subsystem 

components and their associated electrical requirements was not available.  

Without this knowledge, it is extremely difficult to correctly size the capacity of the 

batteries and the solar array.  Additionally, specific voltage and current 

requirements cannot be known until the set of components are known.  This 

means that the EPS could be potentially overdesigned if unneeded voltages are 

included.  Overdesigning means eating into mass and volume margin causing 

potential difficulties in satellite configuration. 

The second reason power requirements were persistently altered is 

because a standardized imaging period profile was not developed before EPS 

design and simulation commenced.  Which pieces of equipment are powered on 

and the timing of power up makes a significant difference in what is required of 

the EPS.  Questions such as, “Will the communications equipment be on during 

imaging?” have huge implications when the communications load could be as 

high or higher than the imaging load.  The number of images TINYSCOPE will 

take and what actions have to be taken before and after imaging can also 

drastically modify the level of power needed.  One example of this difficulty came 

in the form of how many images TINYSCOPE can take in an imaging period.  

Originally proposed as four images in one 10 minute imaging period, this 

                                            
q Although there have been many electro-optical imaging satellites launched and operated, 

none of these was of the size or imaging capability of TINYSCOPE. 
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assumption came under pressure when it became obvious that the amount of 

time needed to download the data in four images could be extensive.  Time over 

one spot on the earth is a luxury a LEO satellite does not have.r  Thus, a high 

data rate implies a high communications transmit power.  Higher communications 

power could lead to a larger solar panel and batteries.  Therefore, the author took 

a fixed baseline of TINYSCOPE and designed to it.  Thus, as that baseline 

changes, the work accomplished in this thesis must be updated, revised, and 

expanded. 

Despite the challenges associated with the overall design of the EPS, the 

progress made with regard to the dynamic EPS model and hardware testing is 

important.  The dynamic EPS model shows that the design is feasible with 

enough margin to accommodate relatively large changes in power requirements.  

It is very conservative to assume, as the EPS model does, that no power will be 

collected during imaging.  This approach extends the amount of time the 

batteries must support the load and reduces the amount of time available for 

charging the batteries.  This means that any power provided at an adequate 

voltage during imaging operations will reduce the battery depth of discharge.  

This has the effect of increasing the predicted battery life.  Despite this 

robustness, the dynamic EPS model should be updated as loads and therefore 

efficiencies evolve. 

Although the hardware testing was not exhaustive, a relatively large 

amount of data was collected that, after analysis, showed that the IBPS has a 

high likelihood of operating successfully in space.  To be prudent, the author 

makes two recommendations.  First, it would be wise to accomplish a full suite of 

three axis vibration testing to GEVS generalized random vibration levels.  Once 

that is done, the IBPS should be thermal-vacuum tested, with soak periods, for at 

least one uninterrupted hot/cold cycle to GEVS qualification levels.  Second, 

                                            
r Typically less than 10 minutes for LEO spacecraft with a reduction of one to two minutes for 

establishing communications for rising above the horizon  and breaking communications when 
the satellite is setting below the horizon. 
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additional troubleshooting of the IBPS malfunction experienced during the first 

thermal-vacuum test should be completed.  The only reasonable hypothesis at 

this point is that one of the chips failed.  This may or may not be the case.  The 

suspect chips could be replaced with new chips and the board re-tested.  If a 

functional test after replacing the chip(s) shows positive results, it can reasonably 

be determined that the suspect chip was at fault. 

The Ocean Server IBPS is a COTS product that comes with all the 

drawbacks of COTS.  Specifically, detailed circuit design and expected 

conditions are not always known.  This can make troubleshooting errors very 

difficult.  Although manufacturer support was fairly swift when IBPS board faults 

were experienced, support was not so good when general design questions were 

posed.  When questions such as, “What is the efficiency of the DC to DC 

converter?” went unanswered, tests had to be devised to discover the answer.  In 

that case it was easy, but in other cases it may not be so straightforward.  

Another inherent problem with a COTS product is that the heritage of the 

components used will never be fully known.  This can be problematic if the 

manufacturer swaps out components without notice.  However, a rigorous 

inspection and test program by the integration team can mitigate this hazard. 

Another area of deliberation when considering using the IBPS is the cost 

tradeoff between using a terrestrial system and an ostensibly more robust space 

rated system.  The single most expensive part of the EPS is the cost of the solar 

cells and the associated work to integrate them into a solar panel.  A rough order 

of magnitude cost estimate for the cells prescribed in Chapter II, Section D is 

approximately $9,000.s  Assuming an integrated solar panel costs $13,500, an 

IBPS based system with two “medium” batteries adds approximately $600 to this 

cost while a CubeSat Power System adds about $6,000 to this cost.  Thus, an  

 

 

                                            
s $250 per cell for 36 cells.  This cost does not include integration costs which could easily 

increase this figure by 50%. 
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IBPS based system is about 28% cheaper overall.  As this estimation is not 

sufficient to base a decision on, it is recommended that this area be studied 

further. 

Given the problems associated with using a COTS product, the final 

decision to use one will always come down to the decision to accept a level of 

risk.  One of the main purposes of this thesis was to increase understanding and 

attempt to quantify that risk so that an informed decision can be made. 
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APPENDIX A. SOLAR ARRAY POWER EQUATION  

The TINYSCOPE EPS is based on the single orbit energy balance 

equation, Equation 1, and the EPS equivalent circuit in Figure 5.  These are 

repeated here for convenience. 

bd d bc cP T P T× ≤ ×  

 

 
Several additional efficiencies are included in Figure 5 that were not 

included in Figure 4.  The efficiencies related to the power controller; 1η , 2η , and 

pη ; were included because distinct efficiencies were observed during hardware 

testing depending upon if the batteries were in a charge or discharge mode.  The 

efficiencies related to the DC to DC converter are due to the fact that efficiencies 

are not uniform when converting one DC voltage to another DC voltage.  A DC to 

DC converter has a higher efficiency when it is converting to a voltage that is 

close in magnitude and sign to its supply side voltage.  Reference Chapter 4, 

Section B for additional details on the Ocean Server IBPS. 

The power required by the load is supplied first by the solar array with any 

remaining power taken from the batteries.  Thus the power taken from the 

batteries is the difference between what the load requires and what the solar 

array supplies.  The power of the battery during discharge bdP  can be written as, 
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Note that Equation 26 allows for discharging of the batteries at anytime—during 

sunlight or eclipse. 

The power supplied to the batteries during charging is the difference 

between the power collected by the solar array and what is required by the load.  

If the load uses all the power collected by the solar array, the batteries are not 

charged.  The power going into the batteries during charge can be written as 
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Equations 26 and 27 can now be substituted into the energy balance 

equation, Equation 1.  The goal is to solve for the power required to be collected 

by the solar array saP . 
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Rearranging and solving for saP  results in Equation 6, 
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Equation 6 is much more difficult to interpret than Equation 5 but it gives an 

accurate expression for the amount of power that must be collected by the solar 

array.  Additionally, one can gain insight into how each of the efficiencies affects 

the overall amount of power that is required.  Note that Equation 6 allows for a 

regulated bus that has multiple efficiencies on the load lines.  The number of 

efficiencies is based on the number of voltages supplied by the DC to DC 

converter in the EPS.  In the case of TINYSCOPE, there are three voltages 

required by the load:  3.3 V, 5 V, and 12 V.  However, any number may be 

included and used in Figure 5 and Equation 6. 
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APPENDIX B. EPS LOAD DETAIL 

Operational Load Detail 

Use Efficiencies? (0=no, 1=yes).  0 will set all efficiencies to 100%. 1

Source Battery Voltage 14.4 V
Battery Discharge /  SA to Pwr‐Ctlr Efficiency 0.95 0.95 0.95
Power Controller Efficiency 0.95 0.95 0.95
DC‐DC Conversion Efficiency 0.73 0.88 0.93
DC‐DC Converter to Load Transmission Efficiency 0.9 0.9 0.9

Slew to establish comms with CMD center (0 ‐ 20 sec)
Voltage: 3.3 5 12 Power
Component
  Radio 0.001 0.012
  GPS 0.30303 0.999999
  IMU 0.07 0.35
  Star Tracker 0.40 2.00
  Sun Sensor 0.015 0.075
  ADCS Controller 3.36E‐04 1.11E‐03
  C&DH 3.36E‐04 1.11E‐03
  TCS 3.36E‐04 0.208333333 2.5011088
  Payload 0.8 0.4167 9.00
  Reaction Wheels 0.82 4.10

    Total Nominal Power 19.0403254

  Current Subtotal 0.30404 2.10500 0.62600 A
  Power at load 1.00333 10.52500 7.51200 W
  Power at output of DC‐DC converter 1.11481 11.69444 8.34667 W
  Power at input of DC DC converter 1.52713 13.28914 8.97491 W
  Power at input of Power Controller 1.60751 13.98857 9.44727 W
  Power internal to battery (net of discharge efficiency) 1.69211 14.72481 9.94450 W
  Total Power 26.36142 W
  Current for stated battery 1.830654 A 20 sec

Solar Array

Battery
ηc=0.95
ηd=0.95

Power Controller
ηpc=0.95

DC‐DC Converter
ηDCDC3=0.73
ηDCDC5=0.88
ηDCDC12=0.93

ηDCDC_Load=0.90

ηSA_PC=.95

3.3V

5V

12V

Operational Loads
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Comms (RWs to low rate slew) (20 ‐ 90 sec)
Voltage: 3.3 5 12 Power
Component
  Radio 0.545 6.54
  GPS 0.30303 0.999999
  IMU 0.07 0.35
  Star Tracker 0.4 2.00
  Sun Sensor 0.015 0.075
  ADCS Controller 3.36E‐04 1.11E‐03
  C&DH 3.36E‐04 1.11E‐03
  TCS 3.36E‐04 0.208333333 2.5011088
  Payload 0.8 0.4167 9.00
  Reaction Wheels 0.24 1.20

    Total 22.668325

  Current Subtotal 0.30404 1.52500 1.17000 A
  Power at load 1.00333 7.62500 14.04000 W
  Power at output of DC‐DC converter 1.11481 8.47222 15.60000 W
  Power at input of DC DC converter 1.52713 9.62753 16.77419 W
  Power at input of Power Controller 1.60751 10.13424 17.65705 W
  Power internal to battery (net of discharge efficiency) 1.69211 10.66762 18.58636 W
  Total Power 30.94609 W
  Current for stated battery 2.149034 A 70 sec

Slew to first image, comms (90 ‐ 110 sec)
Voltage: 3.3 5 12 Power
Component
  Radio 0.545 6.54
  GPS 0.30303 0.999999
  IMU 0.07 0.35
  Star Tracker 0.4 2.00
  Sun Sensor 0.015 0.075
  ADCS Controller 3.36E‐04 1.11E‐03
  C&DH 3.36E‐04 1.11E‐03
  TCS 3.36E‐04 0.208333333 2.50E+00
  Payload 0.8 0.4167 9.00
  Reaction Wheels 0.82 4.10

    Total 25.56833

  Current Subtotal 0.30404 2.10500 1.17000 A
  Power at load 1.00333 10.52500 14.04000 W
  Power at output of DC‐DC converter 1.11481 11.69444 15.60000 W
  Power at input of DC DC converter 1.52713 13.28914 16.77419 W
  Power at input of Power Controller 1.60751 13.98857 17.65705 W
  Power internal to battery (net of discharge efficiency) 1.69211 14.72481 18.58636 W
  Total Power 35.00329 W
  Current for stated battery 2.430784 A 20 sec  
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First Image, comms, RWs in low rate slew (110 ‐ 115 sec)
Voltage: 3.3 5 12 Power
Component
  Radio 0.545 6.54
  GPS 0.30303 0.999999
  IMU 0.07 0.35
  Star Tracker 0.4 2
  Sun Sensor 0.015 0.075
  ADCS Controller 3.36E‐04 1.11E‐03
  C&DH 3.36E‐04 1.11E‐03
  TCS 3.36E‐04 0.208333333 2.50E+00
  Payload 0.8 0.4167 9.00
  Reaction Wheels 0.24 1.2

    Total 22.66833

  Current Subtotal 0.30404 1.52500 1.17000 A
  Power at load 1.00333 7.62500 14.04000 W
  Power at output of DC‐DC converter 1.11481 8.47222 15.60000 W
  Power at input of DC DC converter 1.52713 9.62753 16.77419 W
  Power at input of Power Controller 1.60751 10.13424 17.65705 W
  Power internal to battery (net of discharge efficiency) 1.69211 10.66762 18.58636 W
  Total Power 30.94609 W
  Current for stated battery 2.149034 A 5 sec

Slew to second image, comms (115 ‐ 135 sec)
Voltage: 3.3 5 12 Power
Component
  Radio 0.545 6.54
  GPS 0.30303 0.999999
  IMU 0.07 0.35
  Star Tracker 0.4 2.00
  Sun Sensor 0.015 0.075
  ADCS Controller 3.36E‐04 1.11E‐03
  C&DH 3.36E‐04 1.11E‐03
  TCS 3.36E‐04 0.208333333 2.50E+00
  Payload 0.8 0.4167 9.00
  Reaction Wheels 0.82 4.10

    Total 25.56833

  Current Subtotal 0.30404 2.10500 1.17000 A
  Power at load 1.00333 10.52500 14.04000 W
  Power at output of DC‐DC converter 1.11481 11.69444 15.60000 W
  Power at input of DC DC converter 1.52713 13.28914 16.77419 W
  Power at input of Power Controller 1.60751 13.98857 17.65705 W
  Power internal to battery (net of discharge efficiency) 1.69211 14.72481 18.58636 W
  Total Power 35.00329 W
  Current for stated battery 2.430784 A 20 sec  
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Second Image, comms (135 ‐ 140 sec)
Voltage: 3.3 5 12 Power
Component
  Radio 0.545 6.54
  GPS 0.30303 0.999999
  IMU 0.07 0.35
  Star Tracker 0.4 2
  Sun Sensor 0.015 0.075
  ADCS Controller 3.36E‐04 1.11E‐03
  C&DH 3.36E‐04 1.11E‐03
  TCS 3.36E‐04 0.208333333 2.50E+00
  Payload 0.8 0.4167 9.00
  Reaction Wheels 0.24 1.2

    Total 22.66833

  Current Subtotal 0.30404 1.52500 1.17000 A
  Power at load 1.00333 7.62500 14.04000 W
  Power at output of DC‐DC converter 1.11481 8.47222 15.60000 W
  Power at input of DC DC converter 1.52713 9.62753 16.77419 W
  Power at input of Power Controller 1.60751 10.13424 17.65705 W
  Power internal to battery (net of discharge efficiency) 1.69211 10.66762 18.58636 W
  Total Power 30.94609 W
  Current for stated battery 2.149034 A 5 sec

Slew to CMD Center, comms (140 ‐ 160 sec)
Voltage: 3.3 5 12 Power
Component
  Radio 0.545 6.54
  GPS 0.30303 0.999999
  IMU 0.07 0.35
  Star Tracker 0.4 2
  Sun Sensor 0.015 0.075
  ADCS Controller 3.36E‐04 1.11E‐03
  C&DH 3.36E‐04 1.11E‐03
  TCS 3.36E‐04 1.11E‐03
  Payload 0.00
  Reaction Wheels 0.82 4.1

    Total 14.06833

  Current Subtotal 0.30404 1.30500 0.54500 A
  Power at load 1.00333 6.52500 6.54000 W
  Power at output of DC‐DC converter 1.11481 7.25000 7.26667 W
  Power at input of DC DC converter 1.52713 8.23864 7.81362 W
  Power at input of Power Controller 1.60751 8.67225 8.22486 W
  Power internal to battery (net of discharge efficiency) 1.69211 9.12868 8.65775 W
  Total Power 19.47855 W
  Current for stated battery 1.352677 A 20 sec  
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Comms (160 ‐ 620 sec)
Voltage: 3.3 5 12 Power
Component
  Radio 0.545 6.54
  GPS 0.30303 0.999999
  IMU 0.07 0.35
  Star Tracker 0.4 2
  Sun Sensor 0.015 0.075
  ADCS Controller 3.36E‐04 1.11E‐03
  C&DH 3.36E‐04 1.11E‐03
  TCS 3.36E‐04 1.11E‐03
  Payload 0.00
  Reaction Wheels 0.24 1.2

    Total 11.16833

  Current Subtotal 0.30404 0.72500 0.54500 A
  Power at load 1.00333 3.62500 6.54000 W
  Power at output of DC‐DC converter 1.11481 4.02778 7.26667 W
  Power at input of DC DC converter 1.52713 4.57702 7.81362 W
  Power at input of Power Controller 1.60751 4.81792 8.22486 W
  Power internal to battery (net of discharge efficiency) 1.69211 5.07149 8.65775 W
  Total Power 15.42135 W
  Current for stated battery 1.070927 A 460 sec

Sun Pointing (620 ‐ 3532 sec)
Voltage: 3.3 5 12 Power
Component
  Radio 0.001 0.012
  GPS 0.30303 0.999999
  IMU 0.07 0.35
  Star Tracker 0.4 2
  Sun Sensor 0.015 0.075
  ADCS Controller 3.36E‐04 1.11E‐03
  C&DH 3.36E‐04 1.11E‐03
  TCS 3.36E‐04 1.11E‐03
  Payload 0.00
  Reaction Wheels 0.24 1.2

    Total 4.6403254

  Current Subtotal 0.30404 0.72500 0.00100 A
  Power at load 1.00333 3.62500 0.01200 W
  Power at output of DC‐DC converter 1.11481 4.02778 0.01333 W
  Power at input of DC DC converter 1.52713 4.57702 0.01434 W
  Power at input of Power Controller 1.60751 4.81792 0.01509 W
  Power internal to battery (net of discharge efficiency) 1.69211 5.07149 0.01589 W
  Total Power 6.77949 W
  Current for stated battery 0.470798 A 2912 sec  
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Eclipse (Maintain Attitude) (3532 ‐ 5216)
Voltage: 3.3 5 12 Power
Component
  Radio 0.001 0.012
  GPS 0.30303 0.999999
  IMU 0.07 0.35
  Star Tracker 0.4 2
  Sun Sensor 0.015 0.075
  ADCS Controller 3.36E‐04 1.11E‐03
  C&DH 3.36E‐04 1.11E‐03
  TCS 3.36E‐04 0.208333333 2.50E+00
  Payload 0.00
  Reaction Wheels 0.24 1.2

    Total 7.1403254

  Current Subtotal 0.30404 0.72500 0.20933 A
  Power at load 1.00333 3.62500 2.51200 W
  Power at output of DC‐DC converter 1.11481 4.02778 2.79111 W
  Power at input of DC DC converter 1.52713 4.57702 3.00119 W
  Power at input of Power Controller 1.60751 4.81792 3.15915 W
  Power internal to battery (net of discharge efficiency) 1.69211 5.07149 3.32542 W
  Total Power 10.08903 W
  Current for stated battery 0.700627 A 1684 sec

Eclipse (Maintain Attitude & Warmup) (5216 ‐ 5676.8)
Voltage: 3.3 5 12 Power
Component
  Radio 0.001 0.012
  GPS 0.30303 0.999999
  IMU 0.07 0.35
  Star Tracker 0.4 2
  Sun Sensor 0.015 0.075
  ADCS Controller 3.36E‐04 1.11E‐03
  C&DH 3.36E‐04 1.11E‐03
  TCS 3.36E‐04 0.208333333 2.50E+00
  Payload 0.8 0.416666667 9.00
  Reaction Wheels 0.24 1.2

    Total 16.1403254

  Current Subtotal 0.30404 1.52500 0.62600 A
  Power at load 1.00333 7.62500 7.51200 W
  Power at output of DC‐DC converter 1.11481 8.47222 8.34667 W
  Power at input of DC DC converter 1.52713 9.62753 8.97491 W
  Power at input of Power Controller 1.60751 10.13424 9.44727 W
  Power internal to battery (net of discharge efficiency) 1.69211 10.66762 9.94450 W
  Total Power 22.30423 W
  Current for stated battery 1.548905 A 460.8 sec  
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Operational Load Summary 

Nominal Discharge @ 14.4V
Current Load (A) Time (s) Time (h) Capacity Used (Ah)

1 Eclipse (Maintain Attitude) (3532 ‐ 5216) 0.700627 1684 0.467778 0.327738
2 Eclipse (Maintain Attitude & Warmup) (5216 ‐ 5676.8) 1.548905 460.8 0.128000 0.198260
3 Slew to establish comms with CMD center (0 ‐ 20 sec) 1.830654 20 0.005556 0.010170
4 Comms (RWs to low rate slew) (20 ‐ 90 sec) 2.149034 70 0.019444 0.041787
5 Slew to first image, comms (90 ‐ 110 sec) 2.430784 20 0.005556 0.013504
6 First Image, comms, RWs in low rate slew (110 ‐ 115 sec) 2.149034 5 0.001389 0.002985
7 Slew to second image, comms (115 ‐ 135 sec) 2.430784 20 0.005556 0.013504
8 Second Image, comms (135 ‐ 140 sec) 2.149034 5 0.001389 0.002985
9 Slew to CMD Center, comms (140 ‐ 160 sec) 1.352677 20 0.005556 0.007515
10 Comms (160 ‐ 620 sec) 1.070927 460 0.127778 0.136841
11 Sun Pointing (620 ‐ 3532 sec) 0.470798 2912 0.808889

  Maximum Draw 2.430784
  Battery Load Time (not including "Sun Pointing" loads) 2764.8
  Total 5676.8 0.755288

(4) Series Cells 2.60 Ah
  DOD for nominal orbit cycle 29.05%
  Estimated Number of Cycles

(4) Series, (2) Parallel 5.2 Ah
  DOD for nominal orbit cycle 14.52%

(4) Series, (4) Parallel 10.4 Ah
  DOD for nominal orbit cycle 2.79%  
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Launch and Checkout Detail 

Launch and checkout

Use Efficiencies? (0=no, 1=yes).  0 will set all efficiencies to 100%. 1

Source Battery Voltage 14.4 V
Battery Discharge /  SA to Pwr‐Ctlr Efficiency 0.95 0.95 0.95
Power Controller Efficiency 0.95 0.95 0.95
DC‐DC Conversion Efficiency 0.73 0.88 0.93
DC‐DC Converter to Load Transmission Efficiency 0.9 0.9 0.9

T‐10 Minutes to Deployment
Voltage: 3.3 5 12 Power
Component
  Radio 0
  GPS 0
  IMU 0 0
  Star Tracker 0.00
  Sun Sensor 0
  ADCS Controller 0.00E+00 0
  C&DH 0.00E+00 0
  TCS 0.00E+00 0
  Payload 0.00
  Reaction Wheels 0.00

    Total Nominal Power 0

  Current Subtotal 0.00000 0.00000 0.00000 A
  Power at load 0.00000 0.00000 0.00000 W
  Power at output of DC‐DC converter 0.00000 0.00000 0.00000 W
  Power at input of DC DC converter 0.00000 0.00000 0.00000 W
  Power at input of Power Controller 0.00000 0.00000 0.00000 W
  Power internal to battery (net of discharge efficiency) 0.00000 0.00000 0.00000 W
  Total Power 0.00000 W
  Current for stated battery 0.000000 A 1200 sec  
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3‐Axis Stabilization and Solar Panel Deployment
Voltage: 3.3 5 12 Power
Component
  Radio 0.001 0.012
  GPS 0.30303 0.999999
  IMU 0.07 0.35
  Star Tracker 0.40 2.00
  Sun Sensor 0.015 0.075
  ADCS Controller 3.36E‐04 0.0011088
  C&DH 3.36E‐04 0.0011088
  TCS 3.36E‐04 0.208333333 2.5011088
  Payload 0.00
  Reaction Wheels 0.82 4.10

    Total Nominal Power 10.0403254

  Current Subtotal 0.30404 1.30500 0.20933 A
  Power at load 1.00333 6.52500 2.51200 W
  Power at output of DC‐DC converter 1.11481 7.25000 2.79111 W
  Power at input of DC DC converter 1.52713 8.23864 3.00119 W
  Power at input of Power Controller 1.60751 8.67225 3.15915 W
  Power internal to battery (net of discharge efficiency) 1.69211 9.12868 3.32542 W
  Total Power 14.14622 W
  Current for stated battery 0.982376 A 5400 sec  
Launch and Checkout Summary 

Discharge @ 14.4V
Current Load (A) Time (s) Time (h) Capacity Used (Ah)

1 T‐10 Minutes to Deployment 0 1200 0.333333333 0
2 3‐Axis Stabilization and Solar Panel Deployment 0.982376317 5400 1.5 1.473564475

  Maximum Draw 0.982376317
  Total 1.473564475

(4) Series Cells 2.60 Ah
  DOD for nominal orbit cycle 56.68%
  Estimated Number of Cycles

(4) Series, (2) Parallel 5.2 Ah
  DOD for nominal orbit cycle 28.34%

(4) Series, (4) Parallel 10.4 Ah
  DOD for nominal orbit cycle 14.17%  
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Contingency Operations Detail 

Contingency Operations

Use Efficiencies? (0=no, 1=yes).  0 will set all efficiencies to 100%. 1

Source Battery Voltage 14.4 V
Battery Discharge /  SA to Pwr‐Ctlr Efficiency 0.95 0.95 0.95
Power Controller Efficiency 0.95 0.95 0.95
DC‐DC Conversion Efficiency 0.73 0.88 0.93
DC‐DC Converter to Load Transmission Efficiency 0.9 0.9 0.9

Contingency Operations
Voltage: 3.3 5 12 Power
Component
  Radio 0.095 1.14
  GPS 0.30303 0.999999
  IMU 0.07 0.35
  Star Tracker 0.40 2.00
  Sun Sensor 0.015 0.075
  ADCS Controller 3.36E‐04 0.0011088
  C&DH 3.36E‐04 0.0011088
  TCS 3.36E‐04 0.208333333 2.5011088
  Payload 0.00
  Reaction Wheels 0.06 0.30

    Total Nominal Power 7.3683254

  Current Subtotal 0.30404 0.54500 0.30333 A
  Power at load 1.00333 2.72500 3.64000 W
  Power at output of DC‐DC converter 1.11481 3.02778 4.04444 W
  Power at input of DC DC converter 1.52713 3.44066 4.34886 W
  Power at input of Power Controller 1.60751 3.62174 4.57775 W
  Power internal to battery (net of discharge efficiency) 1.69211 3.81236 4.81869 W
  Total Power 10.32316 W
  Current for stated battery 0.716886 A 5400 sec  
Contingency Operations Summary 
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Discharge @ 14.4V
Current Load (A) Time (s) Time (h) Capacity Used (Ah)

1 Contingency Operations 0.716886201 5400 1.5 1.075329301

  Maximum Draw 0.716886201
  Total 1.075329301

(4) Series Cells 2.60 Ah
  DOD for nominal orbit cycle 41.36%
  Estimated Number of Cycles

(4) Series, (2) Parallel 5.2 Ah
  DOD for nominal orbit cycle 20.68%

(4) Series, (4) Parallel 10.4 Ah
  DOD for nominal orbit cycle 10.34%  
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APPENDIX C. SOLAR CELL SPECIFICATION SHEETS 
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APPENDIX D. SOLAR CELL PREDICTED TEMPERATURE 

S

Earth

φ

λ

 

Figure 60.   Solar Panel Configuration From [16] 

 If back side of SA sees all of Earth Enter "1"  else "0" 1
Item Equation Symbol SMAD Source

Altitude - h 500.0 Given
Inclination - i 1.699950691 Given
Solar/orbit angle - β 0 Given
Orbit angle from SSP - νο 0 Given
Radiator normal WRT Nadir - λ 0.785398163 Given
Earth angular radius asin(Re/Ro) rho 1.187 calc
Earth view factor cosl*(sinr)^2 or = "0" Fe 0.6080 calc
Albedo view factor Fecosbcosno Fa 0.608038453 calc
Solar array temp:   T={[αfScosφ+αbSalFa+εbEFe-ηfpScosφ]/[σ(εf+εb)]}^0.25  Tsa
   Albedo - al 0.3 Given
   Emissivity solar cell side - εf 0.850 Given
   Emissivity back side - εb 0.92 Given
   Absorptivity front side - αf 0.92 Given
   Absorptivity back side - αb 0.17 Given
   Cell packing factor - fp 0.8 Given
   Cell efficiency - η 0.251 Given
   Max direct solar flux~W/m 2̂ - S 1322 Given
   Solar incidence angle~rad - Phi 0 Given
   MaxEarth IR emission @ surface - E 326 Given
   Solar array temperature ~K {[af*S*cos(phi)+ab*S*al*Fa+eb*E*Fe-h*fp*S*cos(phif)]/[s(ef+eb)]}^0.25  Tsa 328.88 calc

Solar array

 

 

 If back side of SA sees all of Earth Enter "1"  else "0" 1
Item Equation Symbol SMAD Source

Altitude - h 500.0 Given
Inclination - i 1.699950691 Given
Solar/orbit angle - β 0 Given
Orbit angle from SSP - νο 0 Given
Radiator normal WRT Nadir - λ 0.785398163 Given
Earth angular radius asin(Re/Ro) rho 1.187 calc
Earth view factor cosl*(sinr)^2 or = "0" Fe 0.6080 calc
Albedo view factor Fecosbcosno Fa 0.608038453 calc
Solar array temp:   T={[αfScosφ+αbSalFa+εbEFe-ηfpScosφ]/[σ(εf+εb)]}^0.25  Tsa
   Albedo - al 0.3 Given
   Emissivity solar cell side - εf 0.850 Given
   Emissivity back side - εb 0.92 Given
   Absorptivity front side - αf 0.92 Given
   Absorptivity back side - αb 0.17 Given
   Cell packing factor - fp 0.8 Given
   Cell efficiency - η 0.251 Given
   Max direct solar flux~W/m 2̂ - S 1414 Given
   Solar incidence angle~rad - Phi 0 Given
   MaxEarth IR emission @ surface - E 326 Given
   Solar array temperature ~K {[af*S*cos(phi)+ab*S*al*Fa+eb*E*Fe-h*fp*S*cos(phif)]/[s(ef+eb)]}^0.25  Tsa 333.61 calc

Solar array
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 If back side of SA sees all of Earth Enter "1"  else "0" 1
Item Equation Symbol SMAD Source

Altitude - h 500.0 Given
Inclination - i 1.699950691 Given
Solar/orbit angle - β 0 Given
Orbit angle from SSP - νο 0 Given
Radiator normal WRT Nadir - λ 0.785398163 Given
Earth angular radius asin(Re/Ro) rho 1.187 calc
Earth view factor cosl*(sinr)^2 or = "0" Fe 0.6080 calc
Albedo view factor Fecosbcosno Fa 0.608038453 calc
Solar array temp:   T={[αfScosφ+αbSalFa+εbEFe-ηfpScosφ]/[σ(εf+εb)]}^0.25  Tsa
   Albedo - al 0.3 Given
   Emissivity solar cell side - εf 0.850 Given
   Emissivity back side - εb 0.92 Given
   Absorptivity front side - αf 0.92 Given
   Absorptivity back side - αb 0.17 Given
   Cell packing factor - fp 0.8 Given
   Cell efficiency - η 0.27 Given
   Max direct solar flux~W/m 2̂ - S 1322 Given
   Solar incidence angle~rad - Phi 0 Given
   MaxEarth IR emission @ surface - E 326 Given
   Solar array temperature ~K {[af*S*cos(phi)+ab*S*al*Fa+eb*E*Fe-h*fp*S*cos(phif)]/[s(ef+eb)]}^0.25  Tsa 327.47 calc

Solar array

 

 

 If back side of SA sees all of Earth Enter "1"  else "0" 1
Item Equation Symbol SMAD Source

Altitude - h 500.0 Given
Inclination - i 1.699950691 Given
Solar/orbit angle - β 0 Given
Orbit angle from SSP - νο 0 Given
Radiator normal WRT Nadir - λ 0.785398163 Given
Earth angular radius asin(Re/Ro) rho 1.187 calc
Earth view factor cosl*(sinr)^2 or = "0" Fe 0.6080 calc
Albedo view factor Fecosbcosno Fa 0.608038453 calc
Solar array temp:   T={[αfScosφ+αbSalFa+εbEFe-ηfpScosφ]/[σ(εf+εb)]}^0.25  Tsa
   Albedo - al 0.3 Given
   Emissivity solar cell side - εf 0.850 Given
   Emissivity back side - εb 0.92 Given
   Absorptivity front side - αf 0.92 Given
   Absorptivity back side - αb 0.17 Given
   Cell packing factor - fp 0.8 Given
   Cell efficiency - η 0.27 Given
   Max direct solar flux~W/m 2̂ - S 1414 Given
   Solar incidence angle~rad - Phi 0 Given
   MaxEarth IR emission @ surface - E 326 Given
   Solar array temperature ~K {[af*S*cos(phi)+ab*S*al*Fa+eb*E*Fe-h*fp*S*cos(phif)]/[s(ef+eb)]}^0.25  Tsa 332.16 calc

Solar array
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APPENDIX E. SUMMARY OF UNITED NATIONS T-TESTS 
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APPENDIX F. EPS SIMULATION PARAMETER FILE 

clear all 
clc 
format compact 
format long 
mu = 398600; 
Re = 6378; 
h = 500; 
  
% Set beta angle 
% 23.5 degrees for winter & summer solstice 
% 0 degrees for vernal & autumnal equinox 
beta = 0*pi/180; 
  
rho = asin(Re/(Re+h)); 
orbit_period_sec = 2*pi/sqrt(mu)*(Re+h)^1.5 
orbit_period_min = orbit_period_sec/60 
time_in_eclipse_sec = orbit_period_sec*acos(cos(rho)/cos(beta))/pi 
time_in_eclipse_min = time_in_eclipse_sec/60 
time_in_sun_sec = orbit_period_sec - time_in_eclipse_sec 
time_in_sun_min = time_in_sun_sec/60 
  
% Set starting point of orbit 
% -135 puts the satellite in eclipse for the first 320 seconds of the 
% simulation. 
nuo = -112*pi/180; 
  
% Set the solar constant 
% 1322 W/m^2 for summer solstice 
% 1367 W/m^2 for vernal & autumnal equinox (mean value throughout the 
year) 
% 1414 W/m^2 for winter solstice 
S = 1335; 
  
  
% Loads 
% 3.3V, 336uA (Texas Instruments MSP430; used formula on p.13 of data 
sheet 
% to calculate average current consumption). 
cdh =       [0           .0011088 
             5676.8      .0011088]; 
  
% 3.3V, 336uA (TI MSP430) 
adcs_ctlr = [0           .0011088 
             5676.8      .0011088]; 
  
% 5V, .07A in normal mode (Analog Devices ADIS16400/ADIS16405) 
imu =       [0           .35 
             5676.8      .35 ]; 
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% Estimate: 5V, .4A (AeroAstro Miniature Star Tracker) 
st =        [0          2 
             5676.8     2 ]; 
          
% 3.3V, .303A (Novatel OEMV -1/1G) 
gps =       [0          1 
             5676.8     1 ]; 
         
% 5V, .015A at peak (Sinclair SS-411) 
sun_sensor =[0           .075 
             5676.8      .075 ]; 
          
% Sinclair 30mNm-sec;  5V.  2 at max (.4A), 1 at low speed steady state 
% (.02A) 
med =       [0          4.1 
             20         4.1 
             20         1.2 
             90         1.2 
             90         4.1 
             110        4.1 
             110        1.2 
             115        1.2 
             115        4.1 
             135        4.1 
             135        1.2 
             140        1.2 
             140        4.1 
             160        4.1 
             160        1.2  
             5676.8     1.2 ]; 
          
% Estimate MSP430 Controller on continuously and 2.5W for heating 
during 
% eclipse.  Uses Minco HK5951 commercial grade polyimide heater. 
tcs_ctlr =  [0          0.0011088 
             140        0.0011088 
             140         .0011088 
             3532        .0011088 
             3532       0.0011088 
             5676.8     0.0011088]; 
          
tcs_heater = [0          2.5 
             140         2.5 
             140         0 
             3532        0 
             3532        2.5 
             5676.8      2.5]; 
  
% 12V, .001A (Sleep) and 12V, .545A (TX & RX simultaneously) 
% Used specs for n920 12V option because IP2421 says it uses from 9-
30VDC 
% but doesn't have current or power specs.  Reference email from Jeff 
% stating that power consumption will be similar to n920.  In future 
can 
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% use actual measurements from radio. 
comms =     [0           .012 
             20          .012 
             20         6.54 
             620        6.54 
             620         .012 
             5676.8      .012 ]; 
          
  
% 12V, .416667A.  10 minute pre-imaging warmup.  Toshiba Teli 
CleverDragon 12MP. 
pyld_camera=[0          5 
             140        5 
             140        0 
             5216.8     0 
             5216.8     5 
             5676.8     5  ]; 
          
% 5V, .8A.  10 minute pre-imaging warmup.  Estimated from PC-104 
version 
% frame grabbers. 
pyld_frame =[0          4 
             140        4 
             140        0 
             5216.8     0 
             5216.8     4 
             5676.8     4  ]; 
  
% Power collection factor to account for not being able to collect 
power 
% when we're imaging.  The satellite will not just be nadir pointing.  
It 
% could be up to 45 degrees off-nadir plus the impacts of beta for an 
% equitorial orbit at the winter and summer solstices. 
 power_factor = [0       0 
                 620     0 
                 620     1 
                 5676.8  1]; 
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APPENDIX G. SOLAR INTENSITY VERSUS BETA MATLAB 
CODE 

The following Matlab code creates a plot of solar Intensity versus 

TINYSOCPE’s beta angle.  The code was used to create Figure 19. 
clear all; 
close all; 
clc; 
format compact 
format short g 
  
% Representative solar intensity from Gilmore 
% Maximum 1414 W/m^2 at winter solstice and minimum of 1322 W/m^2 at 
summer 
% solstice.  Average at equinoxes of approximately 1358W/m^2 
x=linspace(0,2*pi,361); 
y=-46*cos(x-pi/2)+1368; 
  
% beta angle 
day=0:1:360;    % days of year starting on March 21st 
R=6378.135;      % Mean earth radius (km) 
h=500;           % altitude (km) 
u0=0;            % RA of sun in ecliptic 
w0=0;            % RA of AN of orbit 
i=97.402;        % inclination (degrees) 
E=0;             % eccentricity 
% nodal regression rate, wdot 
wdot=-(9.96390003*(R/(R+h))^3.5*cos(i*pi/180))/(1-E^2)^2; 
e=23.44241;      % earth axis tilt (degrees) 
MSD=0.98564733;  % mean solar day 
mu=398601.2;     % earth g constant 
orb_rate=sqrt(mu/(R+h)^3); 
orb_per=2*pi/orb_rate/60; 
earth_ang_radius=asin(R/(R+h))*180/pi; 
u=u0+MSD*day; 
w=w0+wdot*day; 
beta 
=(180/pi)*asin(sin(u*pi/180).*sin(e*pi/180).*cos(i*pi/180)+cos(u*pi/180
).*sin(i*pi/180).*sin(w*pi/180)-
sin(u*pi/180).*cos(e*pi/180).*sin(i*pi/180).*cos(w*pi/180)); 
  
% Calculate required inclination for 500km sun-synchronous orbit 
% J2, below, is from table 4.3 of Curtis 
J2=1.08263*10^(-3); 
incl=180*acos((2*(-1.991*10^-7)*(R+h)^(7/2))/(3*sqrt(mu)*J2*R^2))/pi; 
  
% Plot solar intensity and beta angle on same graph 
hl1 = line(x,y,'Color','r','linewidth',2); 
ax1 = gca; 
set(ax1,'XColor','r','YColor','r') 
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set(get(gca,'XLabel'),'String','Season (Starting at Vernal 
Equinox)','fontweight','bold') 
set(get(gca,'YLabel'),'String','Solar Intensity 
(W/m^2)','fontweight','bold') 
set(ax1,'XTick',[0 pi/2 pi 3/2*pi 2*pi]); 
set(ax1,'XTickLabel','21 Mar|21 Jun|21 Sep|21 Dec|21 
Mar','fontweight','bold'); 
  
ax2 = axes('Position',get(ax1,'Position'),... 
           'XAxisLocation','top',... 
           'YAxisLocation','right',... 
           'Color','none',... 
           'XColor','k','YColor','k','fontweight','bold'); 
set(get(gca,'XLabel'),'String','Day of Year (Starting at Vernal 
Equinox)','fontweight','bold') 
set(get(gca,'YLabel'),'String','Beta Angle 
(Degrees)','fontweight','bold') 
hl2 = line(day,beta,'Color','k','Parent',ax2,'linewidth',2); 
grid on; 
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APPENDIX H. EFFICIENCY MEASUREMENTS 

1 All Loads Connected Description
2 Power In from Ext DC Power Supply (BB, J7)
3   Voltge Measured 18.9000 V
4   Current Measured 0.7850 A
5     Power Line 3 * Line 4 14.8365 W
6
7 Measurements from BB to DC on J13
8 Voltage Measured 18.8 V
9   Current 1 Measured 0.3550 A
10   Current2 Measured 0.4050 A
11     Total Current Line 9 + Line 10 0.7600 A
12 Power Line 8 * Line 11 14.2880 W
13 BB Efficiency Line 12 / Line 5 0.9630
14
15 Power out at Load (J20 of DC)
16 3.3V 5V 12V  ‐12V
17   Voltage Measured 3.3100 4.9530 11.8180 ‐11.3950
18   Current Measured 0.2810 0.6830 0.3540 ‐0.3370
19   Subtotal Power Line 17 * Line 18 0.9301 3.3829 4.1836 3.8401
20     Total Power Sum of Line 19 12.3367 W
21 Overall Efficiency Line 20 / Line 5 0.8315
22
23 Only 3.3V Load Connected
24 Power In from Ext DC Power Supply (BB,J7)
25   Voltge Measured 18.9000 V
26   Current Measured 0.0710 A
27     Power Line 25 * Line 26 1.3419 W
28
29 Measurements from BB to DC on J13
30 Voltage Measured 18.9000 V
31   Current 1 Measured 0.0340 A
32   Current2 Measured 0.0320 A
33     Total Current Line 31 + Line 32 0.0660 A
34 Power Line 30 * Line 33 1.2474 W
35 BB Efficiency Line 34 / Line 27 0.9296
36
37 Power out at Load (J20 of DC)
38 3.3V 5V 12V  ‐12V
39   Voltage Measured 3.3100
40   Current Measured 0.2830
41   Subtotal Power Line 39 * Line 40 0.9367
42     Total Power 0.9367 W
43 DC‐DC Converter Efficiency Line 42 / Line 34 0.7509
44 Overall Efficiency Line 42 / Line 27 0.6981  
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45
46 Only 5V Load Connected
47 Power In from Ext DC Power Supply (BB,J7)
48   Voltge Measured 18.9000 V
49   Current Measured 0.2120 A
50     Power Line 48 * Line 49 4.0068 W
51
52 Measurements from BB to DC on J13
53 Voltage Measured 18.9000 V
54   Current 1 Measured 0.0950 A
55   Current2 Measured 0.1100 A
56     Total Current Line 54 + Line 55 0.2050 A
57 Power Line 53 * Line 56 3.8745 W
58 BB Efficiency Line 57 / Line 50 0.9670
59
60 Power out at Load (J20 of DC)
61 3.3V 5V 12V  ‐12V
62   Voltage Measured 4.9530
63   Current Measured 0.6850
64   Subtotal Power Line 62 * Line 63 3.3928
65     Total Power 3.3928 W
66 DC‐DC Converter Efficiency Line 65 / Line 57 0.8757
67 Overall Efficiency Line 65 / Line 50 0.8468
68
69 Only 12V Load Connected
70 Power In from Ext DC Power Supply (BB, J7)
71   Voltge Measured 18.9000 V
72   Current Measured 0.2450 A
73     Power Line 71 * Line 72 4.6305 W
74
75 Measurements from BB to DC on J13
76 Voltage Measured 18.9000 V
77   Current 1 Measured 0.1090 A
78   Current2 Measured 0.1210 A
79     Total Current Line 77 + Line 78 0.2300 A
80 Power Line 76 * Line 79 4.3470 W
81 BB Efficiency Linen 80 / Line 73 0.9388
82
83 Power out at Load (J20 of DC)
84 3.3V 5V 12V  ‐12V
85   Voltage Measured 11.8950
86   Current Measured 0.3410
87   Subtotal Power Line 85 * Line 86 4.0562
88     Total Power 4.0562 W
89 DC‐DC Converter Efficiency Line 88 / Line 80 0.9331
90 Overall Efficiency Line 88 / Line 73 0.8760  
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91
92 Only ‐12V Load Connected
93 Power In from Ext DC Power Supply (J7)
94   Voltge Measured 18.9000 V
95   Current Measured 0.3180 A
96     Power Line 94 * Line 95 6.0102 W
97
98 Measurements from BB to DC on J13
99 Voltage Measured 18.9000 V
100   Current 1 Measured 0.1380 A
101   Current2 Measured 0.1620 A
102     Total Current Line 100 + 101 0.3000 A
103 Power Line 99 * Line 102 5.6700 W
104 BB Efficiency Line 103 / Line 96 0.9434
105
106 Power out at Load (J20 of DC)
107 3.3V 5V 12V  ‐12V
108   Voltage Measured ‐11.4580
109   Current Measured ‐0.3590
110   Subtotal Power Line 108 * Line 109 4.1134
111     Total Power 4.1134 W
112 DC‐DC Converter Efficiency Line 111 / Line 103 0.7255
113 Overall Efficiency Line 111 / Line 96 0.6844
114
115
116 Average BB Efficiency Average  0.9484  
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1 Charging Battery with no loads connected Description
2 Power In From External DC Power Supply
3   Voltage Measured 18.9000 V
4   Current Measured 3.6700 A
5     Power Line 3 * Line 4 69.3630 W
6
7 Power Going into Battery
8   Voltage Measured 16.6100 V
9   Current Measured 3.8400 A
10     Power Line 8 * Line 9 63.7824 W
11
12 Efficiency 0.9195
13
14 Charging Battery with all loads connected
15 Power In From External DC Power Supply
16   Voltage Measured 18.9000 V
17   Current Measured 3.8500 A
18     Power Line 16 * Line 17 72.7650 W
19
20 Power Going into Battery
21   Voltage Measured 16.5150 V
22   Current Measured 3.0500 A
23     Power Line 21 * Line 22 50.3708 W
24
25 Power Going into Loads
26 3.3V 5V 12V  ‐12V
27   Voltage Measured 3.3100 4.4940 11.8430 ‐11.4100
28   Current Measured 0.3040 0.6980 0.3460 ‐0.3460
29   Subtotal Power Line 27 * Line 28 1.0062 3.1368 4.0977 3.9479
30     Total Power Sum of Line 29 12.1886
31
32 Efficiency (Line 23 + Line 30 ) / Line 18 0.8597
33
34 Average Efficiency Average of Lines 12 & 32 0.8896  
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APPENDIX I. FUNCTIONAL TEST SOFTWARE & EQUIPMENT 

Software 

• Firebird Version 2.1.3 Database Management System.  Must be 
installed to store data collected by OS_Tester1.py. 

• FlameRobin Version 0.9.3 Database Administration Tool.  Used to 
interface with the Firebird database management system. 

• Python Version 2.5 Object Oriented High Level Programming 
Language.  Used as the platform for the two software programs 
below. 

• OS_Tester1.py Python Software to control baseline functional test 
(developed by Mr. Jim Horning) 

• HH147.py temperature collection software.  The Omega HH147 
sends data via a serial RS-232 connection to the control computer 
with is stored in a comma separated value file by HH147.py. 

Hardware 

• One MASTECH MY64 Multimeter to measure battery voltages. 

• Four Agilent 34410A 6 ½ Digit Multimeter controlled by OS-
Tester1.py via LAN to monitor load voltages. 

• One Agilent E3632A DC Power Supply controlled by 
OS_Tester1.py via serial interface to power the base board. 

• One Tektronix TDS 3034C Digital Phosphor Oscilloscope with Hall 
Effect sensor to measure battery current. 

• One ZyXEL ES-2108 Router to route signals from the multimeters 
(used with loads). 

• One Omega HH147 Four-Channel Handheld Data Logger 
Thermometer. 

• One Tenney Model TJR Bench-Top Temperature Chamber. 
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APPENDIX J. VIBRATION TEST RESULTS 

The plots below depict the GEVS random vibration tests conducted on the 

IBPS.  The underlying black line is the test level while the yellow and red lines 

are warning and alarm levels.  The blue line is the drive signal from the vibration 

software and the grey line is the error signal between the drive and the sense 

accelerometer on the DC to DC converter board. 
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APPENDIX K. THERMAL-VACUUM TEST PROCEDURES 

Test Setup Procedure 

WARNING: 

ENSURE NO ELECTRICAL POWER FROM BATTERIES OR EXTERNAL POWER SUPPLY IS CONNECTED 
TO EITHER BOARD OR ANY EXTERNAL CONNECTOR. 

Setup Steps: 

1. Turn on (4) multimeters. 
2. Turn on (1) power supply.  ENSURE THAT THAT THE OUTPUT IS SET TO “OFF”. 
3. Connect BB J10 to DC J10 with 10 pin flat ribbon cable. 
4. Install temperature sensor equipment: 

a. Install up to (4) temperature sensors on boards and internal walls of TVAC chamber. 
b. Connect internal DB37 temperature sensor connector to TVAC temp. sensor connector.
c. Connect external temp sensor connectors to data logging device. 
d. Connect serial DB9 connector from the Omega HH147 to a PC COM port. 
e. Start HH147.py to begin logging temperatures. 
f. Record which sensors correspond to HH147.py’s data traces (T0, T1, T2, and T3). 

5. Place BB and DC boards in TVAC chamber. 
6. Ensure there are no metal or un‐insulated wires touching any part of either board. 
7. Connect Interim Connectors (ICs) DB15 and DB25 to respective DB15 and DB25 power board 

connectors. 
8. Connect IC DB50 to TVAC chamber port (J23). 
9. Install External Connector (EC) DB9 to J24.  Connect J24 to computer serial port. 
10. Install EC DB15 to J25. 

POWER SUPPLY SHOULD ALREADY BE POWERED ON AND SET TO “OFF”. 

a. EC DB15 Pin 1 goes to external power supply positive output (RED) 
b. EC DB15 Pin 2 goes to external power supply return (BLACK) 
c. EC DB15 Pins 3‐9 are ganged to a DB9 connector that must be connected to the load 

bank. 
11. Install EC DB25 to J26: 

a. EC DB25 Pins 1‐5 are ganged to a 5 pin AMP connector that goes to Battery 1.  Do not 
connect battery 1. 

b. EC DB25 Pins 9‐13 are ganged to a 5 pin AMP connector that goes to Battery 2.  Do not 
connect battery 2. 

c. EC DB25 Pins 14‐18 are ganged to a 5 pin AMP connector that goes to Battery 3.  Do not 
connect battery 3. 

d. EC DB25 Pins 21‐25 are ganged to a 5 pin AMP connector that goes to Battery 4.  Do not 
connect battery 4. 

e. EC DB25 Pins 7 & 20 are ganged to an Ocean Server push button switch (yellow & black 
wire).  Connect the Ocean Server switch. 

Install multimeter probes across each resistor in the load bank. 
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28 October 2009 Test 
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17 November 2009 Test 
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APPENDIX L. THERMAL-VACUUM TEST NOTES 

28 October 2009 Test 

Time
Pressure 
(torr)

Tenney 
Temp (°C)

Bat1_V 
(V)

Bat1_I 
(mA)

Bat2_V 
(V)

Bat2_I 
(mA)

Bat3_V 
(V)

Bat3_I 
(mA)

Bat4_V 
(V)

Bat4_I 
(mA) Notes (Steps refer to "TVAC TEST" Procedure)

0935 760 20 15.23 ‐9 15.3 ‐7 15.38 ‐1 15.28 ‐9 Began test, enabled data collection, took first measurements; step 2a
0941 Turned on loads; step 2g
0945 760 20 15.18 ‐150 15.22 ‐220 15.28 ‐340 15.21 ‐200 Step 2i
0946 Enabled power supply; step 2j
0949 760 20 15.32 340 15.37 260 15.44 163 15.37 285 Step 2l
0951 Enabled data collection; step 2m
1006 Began to raise temperature; 1006 is 1256749608 epoch seconds; step 4
1136 Board temps reached 790 C
1144 4.00E‐05
1202 2.70E‐05
1220 2.20E‐05
1250 1.80E‐05
1257 Connected batteries; brought up hyperterminal; all batteries working; step 5a
1258 1.70E‐05 Brought up OS_Tester1.py; step 5b
1300 15.24 ‐12 15.3 ‐14.2 15.44 ‐25 15.28 ‐13 Boards are above 70 C and torr is near 1E‐5; step 6b
1302 Turned on loads; step 6c
1306 15.18 ‐170 15.22 ‐237 15.3 ‐355 15.21 ‐215 Step 6e
1307 Enabled power supply; Step 6f
1314 15.33 505 15.42 440 15.42 ‐3 15.31 ‐3 Step 6h
1316 Turned off loads; step 6i
1318 1.80E‐05
1320 OS_Tester1.py is not responding to inputs.

1321

Disabled power supply thru OS_Tester1.py‐‐it worked; closed OS_Tester1.py; 
opened hyperterminal; only batteries 1 and 2 showed up; data is reasonable; 
handheld multimeter shows good data across all four batteries.

1325
Restarted OS_Tester1.py; it reported only two batteries were working.  Continue 
test with only 2 batteries

1327 1.70E‐05
1328 Turned on load; all loads worked off of batteries 1 and 2
1329 Turned off loads; turned on ambient cooling
1347 1.00E‐05
1352 8.60E‐06
1357 7.20E‐06
1400 Turned off ambient cooling; turned on sub‐zero cooling
1401 6.20E‐06
1410 4.70E‐06
1421 4.50E‐06
1440 2.70E‐06
1500 2.00E‐06
1512 1.70E‐06
1534 1.40E‐06
1536 15.23 ‐60 15.24 ‐93 Step 7b
1537 Turned on loads; step 7c
1542 15.08 ‐548 15.1 ‐580 Step 7e
1542 Enabled power supply; step 7f
1547 15.34 453 15.36 420

1547

Turned off data collection; closed OS_Tester1.py; started hyperterminal; unplugged 
batteries; plugged in batteries 3 & 4; IBPS got power but no data on batteries 3 & 4; 
plugged in batteries 1 & 2‐‐their data showed up in hyperterminal

1555 Turned off sub‐zero cooling; turned on "heat" and "door heat"

1557 1.30E‐06
Closed hyperterminal; started OS_Tester1.py; enabled data collection; turned loads 
on to help with warming

1615 1.90E‐06 42.7
1617 Turned off loads; closed OS_Tester1.py; unplugged batteries

Steps 8 through 10 were not performed as documented.  
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17 November 2009 Test 

Time
Pressure 
(torr)

Tenney 
Temp 
(°C)

Bat1_V 
(V)

Bat1_I 
(mA)

Bat2_V 
(V)

Bat2_I 
(mA)

Bat3_V 
(V)

Bat3_I 
(mA)

Bat4_V 
(V)

Bat4_I 
(mA) Notes (Steps refer to "COLD TVAC TEST" Procedure)

0905 Began test, enabled data collection, took first measurements
0925 Turned on sub‐zero cooling
0935 "Lost" baseboard thermocouple
1005 4.00E‐04 ‐46.2
1029 3.20E‐06 ‐57.5
1040 3.20E‐06 ‐65.1
1041 Started OS_Tester1.py and data collection;  step 4d
1144 1.90E‐06 ‐76.5
1244 1.50E‐06 ‐77.9
1315 1.50E‐06 ‐77.8
1344 1.40E‐06 ‐77.1
1400 1.50E‐06 ‐73
1409 1.40E‐06 ‐72.6 15.07 ‐63 15.07 ‐71 Step 5
1411 Turned on loads; step 5c
1417 14.9 ‐573 14.9 ‐575
1418 Enabled power supply; step 5f
1423 15.21 443 15.21 430 Step 5h
1423‐
1513

Continued to collect data in transit to ambient temperature and 
pressure; did not peroform steps 6‐9 as documented.

1513 Turned off thermocouples
1514 Turned off power supply
1515 Disabled data collection  
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